Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Glue laminated timber (glulam)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Glue laminated timber (glulam)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Glue laminated timber (glulam)"
Franke, Bettina, Florian Scharmacher und Andreas Müller. „Assessment of the Glue-Line Quality in Glued Laminated Timber Structures“. Advanced Materials Research 778 (September 2013): 424–31. http://dx.doi.org/10.4028/www.scientific.net/amr.778.424.
Der volle Inhalt der QuelleOkafor, Kingsley Kenechukwu, und Celestine Akaolisa Ezeagu. „The Analysis of Bending Stiffness and Strength of Glue Laminated Nigerian Timber“. European Journal of Engineering Research and Science 5, Nr. 2 (25.02.2020): 196–200. http://dx.doi.org/10.24018/ejers.2020.5.2.1699.
Der volle Inhalt der QuelleJihan Abd Malek, Nor, Rohana Hassan, Azmi Ibrahim und Mohammed Hasan Alhebshi. „Shear Block Test Performance of Melunak and Mengkulang“. International Journal of Engineering & Technology 7, Nr. 3.11 (21.07.2018): 210. http://dx.doi.org/10.14419/ijet.v7i3.11.15963.
Der volle Inhalt der QuelleKaracabeyli, E., H. Fraser und W. Deacon. „Lateral and withdrawal load resistance of glulam rivet connections made with sawn timber“. Canadian Journal of Civil Engineering 25, Nr. 1 (01.01.1998): 128–38. http://dx.doi.org/10.1139/l97-070.
Der volle Inhalt der QuelleKlapálek, Pavel, Lenka Melzerová und Tomáš Plachy. „Pulse Method Used for Non-Destructive Assessment of Glued Laminated Timber Beams“. Applied Mechanics and Materials 827 (Februar 2016): 231–34. http://dx.doi.org/10.4028/www.scientific.net/amm.827.231.
Der volle Inhalt der QuelleBuchanan, A. H., und R. H. Fairweather. „Seismic design of glulam structures“. Bulletin of the New Zealand Society for Earthquake Engineering 26, Nr. 4 (31.12.1993): 415–36. http://dx.doi.org/10.5459/bnzsee.26.4.415-436.
Der volle Inhalt der QuelleKeenan, F. J., J. Kryla und B. Kyokong. „Shear strength of spruce glued—laminated timber beams“. Canadian Journal of Civil Engineering 12, Nr. 3 (01.09.1985): 661–72. http://dx.doi.org/10.1139/l85-073.
Der volle Inhalt der QuelleKaracabeyli, Erol, und Henley Fraser. „Short-term strength of glulam rivet connections made with spruce and Douglas-fir glulam and Douglas-fir solid timber“. Canadian Journal of Civil Engineering 17, Nr. 2 (01.04.1990): 166–72. http://dx.doi.org/10.1139/l90-021.
Der volle Inhalt der QuelleVodiannikov, Mikhail, und Galina Kashevarova. „Composite Solutions for Glulam Joints“. Key Engineering Materials 801 (Mai 2019): 47–52. http://dx.doi.org/10.4028/www.scientific.net/kem.801.47.
Der volle Inhalt der QuelleZhou, Xian Yan, Qian Wang, Zhi Feng Wang, Zhong Feng Zhang und Lei Cao. „Research on Mechanical Properties and Engineering Application of Modern Timber Structure“. Advanced Materials Research 639-640 (Januar 2013): 105–10. http://dx.doi.org/10.4028/www.scientific.net/amr.639-640.105.
Der volle Inhalt der QuelleDissertationen zum Thema "Glue laminated timber (glulam)"
Muraleedharan, Aishwarya, und Reiterer Stefan Markus. „Combined glued laminated timber using hardwood and softwood lamellas“. Thesis, Linnéuniversitetet, Institutionen för byggteknik (BY), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-58628.
Der volle Inhalt der QuelleFawwaz, Maha, und Adnan Hanna. „Structural behavior of notched glulam beams reinforced by means of plywood and FRP“. Thesis, Linnéuniversitetet, Institutionen för teknik, TEK, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-19479.
Der volle Inhalt der QuelleTack vare sina goda egenskaper används trä i byggnadskonstruktioner i allt storeomfattning. Konstruktionsvirke (sågade trävaror) kan dock inte alltid användas pågrund av de begränsade dimensioner som finns tillgängliga. På grund av bl a dettahar ett flertal så kallade engineer wood products (EWP) utvecklats. Limträ är en typav EWP som består av sammanlimmade lameller som bygger upp tvärsnitt i balkareller pelare. Limträ kan tillverkas i nästan godtycklig storlek och form och kan enkeltförses med t ex urtag. Vid urtag i balkändar nära upplag uppstår högaspänningskoncentrationer vid urtagets horn på grund av geometrin. Koncentrationenav normalspänningar och skjuvspänningar kan leda till plötsligt brott på grund avsprickpropagering från urtagets hörn, något som måste tas hänsyn till viddimensionering. Dagens dimensioneringsmetoder är baserade på att man tar hänsyntill enbart normalspänningarna vinkelrät fiberriktningen.Målet med detta arbete har varit att studera beteendet hos limträbalkar med urtag vidupplag som förstärkts med fiberarmering eller plywood. Huvudmålet har varit attbestämma balkarnas bärförmåga, vilket skett genom att genomföra försök med olikakonfigurationer vad gäller förstärkningsmaterial och dess utformning. Vidare harolika dimensioneringsmetoder från litteraturen studerats.Kraft och förskjutning under provningarna uppmättes dels med traditionellamätmetoder, men deformationerna mättes även med beröringsfri metod, ARAMIS.En enkel tvådimensionell finit elementmodell skapades och analyserades i ABAQUSför analys av oförstärkt balk. Normalspänningar och skjuvspänningar beräknades ochmedelspänningarna längs en på förhand definierad sträcka beräknades.Medelspänningskriteriet användes sedan för att uppskatta balkens bärförmåga.Enligt FE-beräkningarna uppskattades bärförmågan för de oförstärkta balkarna till ca40 kN. Provningarna gav ett medelvärde på balkarnas bärförmåga på ca 30 kN,medan de förstärkta balkarna hade en 2,5 gånger högre bärförmåga. Skillnadenmellan FE-beräkningarna och provningarna kan förklaras med den osäkerhet somfinns vad gäller det aktuella trämaterialets egenskaper.Beräkningar enligt Eurokod 5 gav en karakteristisk bärförmåga på 20,2 kN.
Azambuja, Maximiliano dos Anjos. „Avaliação do adesivo poliuretano à base de mamona na fabricação de Madeira Laminada Colada (MLC)“. Universidade de São Paulo, 2002. http://www.teses.usp.br/teses/disponiveis/88/88131/tde-11072017-151910/.
Der volle Inhalt der QuelleThe aim of this work is the study of the use of alternative adhesive for glued laminated timber (GLULAM). This adhesive, based on castor oil, presents ecological and economical advantages in relation of traditionally used. The appropriate parameters for gluing were determined and the compatibility between this adhesive and treatment with the waterbome preservative of chromated copper arsenate (CCA-C) were evaluated through shear tests and tensions tests (perpendicular and parallel to the grain), using the species Pinus caribea hondurensis. With these parameters, were made 12 beams of GLULAM; using the species Pinus caribea hondurensis and Eucaliptus grandis. The structural performance of the beams of GLULAM was evaluated through static bending tests. The results obtained allow concluding the good performance of the adhesive polyurethane based on castor oil, for use in wood not preserved and preserved with CCA type-C. The gluing pressures indicated are 0,8 MPa for non-treated wood, and 1,6 MPa for treated wood. The gluing pressure recommended for finger-joints is 9 MPa, for treated wood or not.
Icimoto, Felipe Hideyoshi. „Dormentes de Madeira Lamelada Colada (MLC) reforçados com tecidos de fibra de vidro“. Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/18/18158/tde-06082018-104852/.
Der volle Inhalt der QuelleBrazil\'s first railroad was inaugurated in April, 1854 by Barão de Mauá with 14.5 km of extension. Currently the country has 27980 km of railways, and this transportation modal has 25% participation in the Brazilian freight transport matrix. One of the most important elements of railway superstructure is the sleeper (or tie), which can be manufactured from several materials, such as the traditional wood, that has historical and well-established use for this structural application, as well as concrete, steel, and recently, polymer composites. The classic sleeper is made by timber from native species of high density with consequent high mechanical strength and natural durability. However, due to the restrictions imposed on the extraction of these native species, there was a strong reduction in their supply, being forced to replace them with timber from high density eucalyptus planted forests such as E. citriodora, E. paniculata and E. tereticornis. Therefore, sleepers from different eucalyptus species, that are not suitable for this use, are presenting many problems on railroad. Another wood from planted forests widely used in Brazil is the pinus, and a very noble application for this kind of wood is the production of structural elements in Glued Laminated Timber (Glulam). The aim of this work was the theoretical and experimental study based on static and dynamic tests of Glulam sleepers manufactured using Pinus spp. treated with CCA, glued with polyurethane adhesive, and reinforced with bidirectional fiberglass fabric. For that, a theoretical and experimental study was carried out from static and dynamic tests, considering the potential use of new reforestation species of wood with suitable strength to this purpose. The results show technical feasibility in the use of Glulam sleepers made with Pinus spp. reinforced with fiberglass provided that visual and mechanical classifications of the timber are realized, in order to obtain the required strength and stiffness properties.
Al-Djaber, Jafar. „Prestressed glue laminated beams reinforced with steel plates : Comparison between prestressed, reinforced and non-reinforced glue laminated beams according to the Eurocode and the Swedish annex“. Thesis, KTH, Bro- och stålbyggnad, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-236059.
Der volle Inhalt der QuelleDeng, James X. „Strength of Epoxy Bonded Steel Connections in Glue Laminated Timber“. University of Canterbury. Civil Engineering, 1997. http://hdl.handle.net/10092/8262.
Der volle Inhalt der QuelleMartins, Gisele Cristina Antunes. „Análise numérica e experimental de vigas de madeira laminada colada em situação de incêndio“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-11102016-111511/.
Der volle Inhalt der QuelleStructural elements of Glued Laminated Timber (glulam) have long been used in North America and Europe, but their use is still restricted in Brazil for safety reasons, especially related to potential risks in face of fire. The present work investigated the thermal and mechanical behavior of structural elements of glulam exposed to fire standard ISO 834. The glued laminated timber was produced from two wood species (Eucalyptus and Pinus) without any treatments. However, elements treated with wood treatments like Copper Chrome Boron (MOQ® OX 50 -CCB-O) or fire retardant treatment (OSMOGUARD® FR100) were also used to investigate their influence on charring. The main objective of this study was to assess the fire resistance of the glulam elements, evaluating the influence of wood species and, consequently, the influence of density, as well as the effects of preservative treatment. The experimental program was carried out in a gas oven, with internal dimensions of 3m x 4m x 1.5m, and the numerical analyses were performed by ABAQUS. The numerical analyses aimed to monitor the deflection in the middle of the span as well as the temperature distribution along the depth of the elements. The results obtained from both the experimental and numerical analyses were compared. Calculation methods proposed by different authors and international regulations have been applied for verification of the proposed design in fire. A comparison of the results show that the use of calculation methods (simplified and advanced) represents a risk to fire safety in case of using the values of char rate for Brazilian wood species determined from the calculation methods.
Deng, Xixian. „Strength of the epoxy bonded steel connection in glue laminated timber“. Thesis, University of Canterbury. Civil Engineering, 1996. http://hdl.handle.net/10092/7510.
Der volle Inhalt der QuelleOng, Chee Beng. „Performance of glue-laminated beams from Malaysian Dark Red Meranti timber“. Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760973.
Der volle Inhalt der QuelleLundberg, Albin, und Pontus Forsberg. „FLERVÅNINGSHUS MED TRÄSTOMME : En undersökning av utformningsprocessen för detaljlösningar i trä“. Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-44680.
Der volle Inhalt der QuelleBücher zum Thema "Glue laminated timber (glulam)"
Lim, K. Y. S. Protected nailed gusset connections for glulam members. Judgeford [N.Z.]: BRANZ, 1990.
Den vollen Inhalt der Quelle findenYellow Popular glulam timber beam performance. Madison, WI (One Gifford Pinchot Drive, Madison 53705-2398): U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1993.
Den vollen Inhalt der Quelle findenB, Manbeck H., und Forest Products Laboratory (U.S.), Hrsg. Performance of Red Maple glulam timber beams. Madison, WI. (One Gifford Pinchot Dr., Madison, 53705-2398): U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Glue laminated timber (glulam)"
Xiao, Y., B. Shan, R. Z. Yang, Z. Li und J. Chen. „Glue Laminated Bamboo (GluBam) for Structural Applications“. In Materials and Joints in Timber Structures, 589–601. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7811-5_54.
Der volle Inhalt der QuelleMd Daud, Atikah Fatma, Zakiah Ahmad und Rohana Hassan. „Charring Rate of Glued Laminated Timber (Glulam) Made from Selected Malaysian Tropical Timber“. In InCIEC 2014, 1107–16. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-290-6_98.
Der volle Inhalt der QuelleDill-Langer, Gerhard, und Simon Aicher. „Glulam Composed of Glued Laminated Veneer Lumber Made of Beech Wood: Superior Performance in Compression Loading“. In Materials and Joints in Timber Structures, 603–13. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7811-5_55.
Der volle Inhalt der QuelleFranke, Bettina, Florian Scharmacher und Andreas Müller. „Assessment of the Glue-Line Quality in Glued Laminated Timber Structures“. In Materials and Joints in Timber Structures, 395–403. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7811-5_36.
Der volle Inhalt der QuelleSvilans, Tom, Paul Poinet, Martin Tamke und Mette Ramsgaard Thomsen. „A Multi-scalar Approach for the Modelling and Fabrication of Free-Form Glue-Laminated Timber Structures“. In Humanizing Digital Reality, 247–57. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6611-5_22.
Der volle Inhalt der QuelleOng, C. B. „Glue-laminated timber (Glulam)“. In Wood Composites, 123–40. Elsevier, 2015. http://dx.doi.org/10.1016/b978-1-78242-454-3.00007-x.
Der volle Inhalt der QuelleSanabria, Sergio J., Roman Furrer, Jürg Neuenschwander, Peter Niemz und Urs Sennhauser. „Bonding Defect Imaging in Glulam with Novel Air-Coupled Ultrasound Testing“. In Research Developments in Wood Engineering and Technology, 221–46. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-4554-7.ch006.
Der volle Inhalt der QuelleShirmohammadi, Maryam, und William Leggate. „Review of Existing Methods for Evaluating Adhesive Bonds in Timber Products“. In Engineered Wood Products for Construction [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99237.
Der volle Inhalt der QuelleKantchev, V., und D. Partov. „Time depended behavior of steel – reinforced glue – laminated timber beams, regarding rheology“. In Improvement of Buildings' Structural Quality by New Technologies, 225–32. Taylor & Francis, 2005. http://dx.doi.org/10.1201/9780203970843.ch25.
Der volle Inhalt der Quelle„Time depended behavior of steel – reinforced glue – laminated timber beams, regarding rheology“. In Improvement of Buildings' Structural Quality by New Technologies, 237–44. CRC Press, 2005. http://dx.doi.org/10.1201/9780203970843-26.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Glue laminated timber (glulam)"
Gaudry, Laurent, Martial Chabloz, Darius Golchan, Julien Nembrini und Matthias Schmid. „Ecological mass timber as an answer to affordable housing in Switzerland?“ In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.0621.
Der volle Inhalt der QuelleSvilans, Tom. „GluLamb: A toolkit for early-stage modelling of free-form glue-laminated timber structures“. In 2021 European Conference on Computing in Construction. University College Dublin, 2021. http://dx.doi.org/10.35490/ec3.2021.194.
Der volle Inhalt der QuelleWanninger, Flavio, Andrea Frangi und Bozidar Stojadinovic. „Preliminary performance-based design of a post-tensioned glue-laminated timber frame“. In International Conference on Performance-based and Life-cycle Structural Engineering. School of Civil Engineering, The University of Queensland, 2015. http://dx.doi.org/10.14264/uql.2016.704.
Der volle Inhalt der QuelleGleason, Tim, Gordana Herning und John Klein. „Structural Systems for Mass Timber Buildings“. In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.1156.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Glue laminated timber (glulam)"
Wacker, James P., und Matthew S. Smith. Standard plans for glued-laminated timber bridge superstructures: longitudinal glulam decks, glulam stringer bridges; and transverse glulam decks. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2019. http://dx.doi.org/10.2737/fpl-gtr-260.
Der volle Inhalt der Quelle