Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Gliomas classification“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Gliomas classification" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Gliomas classification"
Faraji-Rad, Mohammad. „Epidemiological Study of Molecular and Genetic Classification in Adult Diffuse Glioma“. International Journal of Surgery & Surgical Techniques 6, Nr. 2 (2022): 1–5. http://dx.doi.org/10.23880/ijsst-16000171.
Der volle Inhalt der QuelleKalidindi, Navya, Rosemarylin Or, Sam Babak und Warren Mason. „Molecular Classification of Diffuse Gliomas“. Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 47, Nr. 4 (10.01.2020): 464–73. http://dx.doi.org/10.1017/cjn.2020.10.
Der volle Inhalt der QuelleKwikima, Ugumba. „GLIOMA-04 BRIDGING THE GAP ON ADULT GLIOMA IMAGING, DIAGNOSIS AND FOLLOW UP IN SUB-SAHARAN AFRICA“. Neuro-Oncology Advances 5, Supplement_4 (31.10.2023): iv1. http://dx.doi.org/10.1093/noajnl/vdad121.003.
Der volle Inhalt der QuelleHauser, Peter. „Classification and Treatment of Pediatric Gliomas in the Molecular Era“. Children 8, Nr. 9 (27.08.2021): 739. http://dx.doi.org/10.3390/children8090739.
Der volle Inhalt der QuelleHervey-Jumper, Shawn L., Jing Li, Joseph A. Osorio, Darryl Lau, Annette M. Molinaro, Arnau Benet und Mitchel S. Berger. „Surgical assessment of the insula. Part 2: validation of the Berger-Sanai zone classification system for predicting extent of glioma resection“. Journal of Neurosurgery 124, Nr. 2 (Februar 2016): 482–88. http://dx.doi.org/10.3171/2015.4.jns1521.
Der volle Inhalt der QuelleCinarer, Gokalp, und Bulent Gursel Emiroglu. „Classification of brain tumours using radiomic features on MRI“. New Trends and Issues Proceedings on Advances in Pure and Applied Sciences, Nr. 12 (30.04.2020): 80–90. http://dx.doi.org/10.18844/gjpaas.v0i12.4989.
Der volle Inhalt der QuelleBillard, P., C. Guerriau, C. Carpentier, F. Juillard, N. Grandin, P. Lomonte, P. Kantapareddy et al. „OS02.6.A The TeloDIAG: How telomeric parameters can help in glioma rapid diagnosis and liquid biopsies approaches“. Neuro-Oncology 23, Supplement_2 (01.09.2021): ii5—ii6. http://dx.doi.org/10.1093/neuonc/noab180.015.
Der volle Inhalt der QuelleIm, Sanghyuk, Jonghwan Hyeon, Eunyoung Rha, Janghyeon Lee, Ho-Jin Choi, Yuchae Jung und Tae-Jung Kim. „Classification of Diffuse Glioma Subtype from Clinical-Grade Pathological Images Using Deep Transfer Learning“. Sensors 21, Nr. 10 (17.05.2021): 3500. http://dx.doi.org/10.3390/s21103500.
Der volle Inhalt der QuelleLewis, Paul D. „Classification of gliomas“. Current Diagnostic Pathology 2, Nr. 3 (September 1995): 175–80. http://dx.doi.org/10.1016/s0968-6053(05)80056-0.
Der volle Inhalt der QuellePisapia, David J. „The Updated World Health Organization Glioma Classification: Cellular and Molecular Origins of Adult Infiltrating Gliomas“. Archives of Pathology & Laboratory Medicine 141, Nr. 12 (01.12.2017): 1633–45. http://dx.doi.org/10.5858/arpa.2016-0493-ra.
Der volle Inhalt der QuelleDissertationen zum Thema "Gliomas classification"
Abdel-Hady, Mohamed Helmy Abdel-Rahman. „Molecular genetic profiling of low grade gliomas : towards a molecular genetic classification /“. The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486402957195399.
Der volle Inhalt der QuelleWehbe, Katia. „Usage of FTIR spectro-imaging for the development of a molecular anatomo-pathology of cerebral tumors“. Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13677/document.
Der volle Inhalt der QuelleMalignant gliomas are very aggressive tumors with poor prognosis, highly angiogenic and invasive into the surrounding brain parenchyma, making their resection very difficult. Regarding the limits of current imaging techniques, we have proposed Fourier Transform Infrared (FTIR) spectro-imaging, with a spatial resolution of 6 µm, to provide molecular information for the histological examination of gliomas. Our work was based on the research of molecular parameters of blood vessels, notably on the basis of the contents of their basement membrane, which undergoes changes due to tumor angiogenic stress. We have identified alterations of the secondary structure of proteins (such as collagen) in blood vessels during tumor growth. We have also assessed the changes in fatty acyl chains of membrane phospholipids, which revealed a higher unsaturation level in tumor vessels. Then, on a murine glioma model, we have established an efficient method of blood vessels classification based on their carbohydrates and fats contents, allowing the differentiation between healthy and tumor blood vessels. The combination of these parameters was used to provide a molecular histopathology for the study of human gliomas. Our results have demonstrated the feasibility of differentiating between healthy and tumor vasculature in these human gliomas, which help delimitating areas of corresponding tissue. This technique could become a reliable and fast analytical tool, with duration compatible with the surgery and thus very useful for neurosurgeons
Ritt, Philipp [Verfasser], und Joachim [Akademischer Betreuer] Hornegger. „Automated Classification of Cerebral Gliomas by Means of Quantitative Emission Tomography and Multimodal Imaging / Philipp Ritt. Gutachter: Joachim Hornegger“. Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2014. http://d-nb.info/1054331413/34.
Der volle Inhalt der QuelleSteinmeier, Ralf, Stephan B. Sobottka, Gilfe Reiss, Jan Bredow, Johannes Gerber und Gabriele Schackert. „Surgery of Low-Grade Gliomas Near Speech-Eloquent Regions: Brainmapping versus Preoperative Functional Imaging“. Karger, 2002. https://tud.qucosa.de/id/qucosa%3A27614.
Der volle Inhalt der QuelleDie Identifikation sprachaktiver Areale ist von höchster Bedeutung bei der Operation von Tumoren in der Nähe des vermuteten Sprachzentrums, da das klassische Konzept einer konstanten Lokalisation des Sprachzentrums sich als unrichtig erwiesen hat und die räumliche Ausdehnung dieser Areale eine hohe interindividuelle Varianz aufweisen kann. Einige neurochirurgische Zentren benutzen deshalb intraoperativ elektrophysiologische Methoden, die jedoch eine Operation am wachen Patienten voraussetzen. Dies kann sowohl für den Patienten als auch das Operations-Team eine schwere Belastung bei diesem mehrstündigen Eingriff darstellen, zusätzlich können epileptische Anfälle durch die elektrische Stimulation generiert werden. Alternativ können Modalitäten des «functional brain imaging» (PET, fMRT, MEG usw.) eingesetzt werden, die die individuelle Lokalisation sprachaktiver Areale gestatten. Die Bildfusion dieser Daten mit einem konventionellen 3D-CT oder MRT erlaubt den exakten Transfer dieser Daten in den OP-Situs mittels Neuronavigation. Während Standards bei elektrophysiologischen Stimulationstechniken existieren, die eine permanente postoperative Verschlechterung der Sprachfunktion weitgehend verhindern, bleibt die Relevanz sprachaktiver Areale bei den neuesten bildgebenden Techniken bezüglich einer Operations-bedingten Verschlechterung der Sprachfunktion bisher noch unklar.
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Dube, Shishir. „An automated system for quantitative hierarchical image analysis of malignant gliomas developing robust techniques for integrated segmentation/classification and prognosis of glioblastoma multiforme /“. Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1876284371&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Der volle Inhalt der QuelleDeluche, Mouricout Elise. „Implication des biomarqueurs NTRK2 et CHI3L1 dans la nouvelle classification histo-moléculaire des gliomes“. Thesis, Limoges, 2018. http://www.theses.fr/2018LIMO0063/document.
Der volle Inhalt der QuelleGliomas, primary brain tumours of the central nervous system, are often of poor prognosis.The absence of clear criteria to identify them makes their diagnosis and management particularly difficult. The combined analysis of a cohort of 64 glioma patients and an international cohort of 671 patients from the TCGA revealed two prognostic groups of a differential expression panel of 26 genes (p = 0.007). This stratification into two prognostic groups was confirmed independently of the grade and molecular group of the tumor (p <0.0001). We have established a new diagnostic strategy based on the molecular classification of gliomas by integrating two prognostic biomarkers CHI3L1 and NTRK2. Multivariate analysis confirms that these biomarkers are independent of IDH status and tumor grade.While we have demonstrated by the protein analysis of CHI3L1 concordance with the transcripts, the results are different for TrkB. Therefore, a high expression of TrkB and its p75NTR co-receptor would be associated with tumor aggressiveness regardless of IDH status. Lastly, TrkB and p75NTR are present in exosomes from plasma of healthy controls and glioma patients, but their expression increases with the aggressiveness of tumor
Le, Rhun Émilie. „Recherche de biomarqueurs protéiques dans le but de réaliser une classification moléculaire des gliomes : étude GLIOMIC“. Thesis, Lille 2, 2017. http://www.theses.fr/2017LIL2S005/document.
Der volle Inhalt der QuelleThe annual incidence of gliomas is estimated at 6.6 per 100,000. Suvival varies profoundly by type of glioma, with 5-year survival rates of 48% for World Health Organization (WHO) grade II diffuse astrocytoma, 28% for WHO grade III anaplastic astrocytomas, 80% for WHO grade II oligodendroglioma, 52% for WHO grade III anaplastic oligodendroglioma and 5% for WHO grade IV glioblastoma, the most frequent primary malignant brain tumor. A better understanding of the molecular pathogenesis and the biology of these tumors is required to design better therapies which can ultimately improve the prognosis of patients. The WHO 2016 classification of central nervous system tumors has for the first time integrated molecular data with the histopathological data, in order to improve the classification of the different subgroups of central nervous system tumors and to allow to derive more specific therapeutic strategies for each of the different subgroups.In the present work, we aimed at evaluating the value of a proteomic approach using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry coupled with microproteomic analysis in gliomas through the GLIOMIC clinical study (NCT02473484), we aimed at obtaining a molecular classification of glioblastomas by integrating clinical data to the ones obtained by such technologies. The feasibility of this approach was first demonstrated in a cohort of anaplastic gliomas. In this first analysis, we showed that although proteomic analysis confirmed the heterogeneity of brain tumors already observed with the histological analysis, the two approaches may lead to different and complementary information. Three different groups of proteins of interest were identified: one involved in neoplasia, one related to glioma with inflammation, and one involved neurogenesis. Then, analyses of glioblastomas confirmed the three proteomic patterns of interest already observed in the anaplastic gliomas, which represents new information as compared to histopathological analysis alone. These results have to be confirmed in a larger cohort of patients.We conclude that MALDI mass spectrometry coupled with microproteomic analysis may provide new diagnostic information and may aid in the identification of new biomarkers. The integration of these proteomic biomarkers into the clinical data, histopathological data and data from molecular biology may improve the knowledge on gliomas, their classification and development of new targeted therapies
Back, Michael. „Optimising the management of anaplastic glioma in the era of molecular classification“. Thesis, The University of Sydney, 2020. https://hdl.handle.net/2123/22332.
Der volle Inhalt der QuelleErb, Gilles. „Application de la RMN HRMAS en Cancérologie “Modèles métaboliques de classification des tumeurs cérébrales”“. Phd thesis, Université Louis Pasteur - Strasbourg I, 2008. http://tel.archives-ouvertes.fr/tel-00441765.
Der volle Inhalt der QuelleCrespin, Sophie. „Implications de Cx43 dans les tumeurs gliales humaines : approches in situ et in vitro“. Poitiers, 2008. http://theses.edel.univ-poitiers.fr/theses/2008/Crespin-Sophie/2008-Crespin-Sophie-These.pdf.
Der volle Inhalt der QuelleThe possible involvement of Gap-Junctional Intercellular Communication (GJIC) in carcinogenesis has been hypothesized in the 1960s. Later, the expression of connexins, the molecular basis of GJIC, has been shown to “normalize” the phenotype of various tumor cells. Our study, using the tissue micro array approach, was focused on connexin 43 (Cx43) expression in human gliomas (59 tumor samples). We showed that the expression of Cx43 protein was altered and, in several cases, especially in grade-IV gliomas, Cx43 was lost. Nonetheless, due to tumor heterogeneity, a complex pattern of expression was revealed: Cx43 exhibited aberrant staining, that means a translocation into the cytoplasm possibly in the nucleus. Several works suggested that Cx43 could « normalize » tumor cells by a GJIC-independent mechanism. We investigated the role played by Cx43 and different truncated forms of the protein, unable to restore GJIC, in human glioma cell lines. Our data showed that Cx43 expression did not induce any change on cell proliferation when cell lines were maintained in monolayer cultures. On the contrary, the cells trandusced by Cx43 constructs (full-length or truncated) grew less in soft agar assay. In parallel, it appeared that all the Cx43 constructs increased motility. To conclude, Cx43 seems to play a complex role in human glioma progression. Its expression and localization are altered, but the underlying mechanisms remain unknown. Even if Cx43 seems to be altered in gliomas, a maintained expression of the protein could not be correlated with a good prognosis since their motility is increased by Cx43 expression
Bücher zum Thema "Gliomas classification"
Adamson, David Cory. Gliomas: Classification, Symptoms, Treatment and Prognosis. Nova Science Publishers, Incorporated, 2014.
Den vollen Inhalt der Quelle findenPandey, Sanjeet, Dr Sheshang Degadwala und Dr Vineet Kumar Singh. BRAIN TUMOR CLASSIFICATION INTO HIGH AND LOW GRADE GLIOMAS. Scholars' Press, 2021.
Den vollen Inhalt der Quelle findenKleihues, Paul, Elisabeth Rushing und Hiroko Ohgaki. The 2016 revision of the WHO classification of tumours of the central nervous system. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199651870.003.0001.
Der volle Inhalt der QuelleDavid N., M.D. Louis (Editor), Hiroko Ohgaki (Editor), Otmar D. Wiestler (Editor) und Webster K. Cavenee (Editor), Hrsg. Who Classification of Tumours of the Central Nervous System (Who Classfication of Tumours). 4. Aufl. Not Avail, 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Gliomas classification"
Wesseling, Pieter. „Classification of Gliomas“. In Emerging Concepts in Neuro-Oncology, 3–20. London: Springer London, 2012. http://dx.doi.org/10.1007/978-0-85729-458-6_1.
Der volle Inhalt der QuelleKato, Kikuya. „Molecular Classification of Gliomas“. In Tumors of the Central Nervous System, Volume 1, 9–19. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0344-5_2.
Der volle Inhalt der QuelleRigau, Valérie. „Histological Classification“. In Diffuse Low-Grade Gliomas in Adults, 31–44. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-2213-5_3.
Der volle Inhalt der QuelleAllinson, Kieren S. J. „The Classification of Adult Gliomas“. In Management of Adult Glioma in Nursing Practice, 95–107. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-76747-5_7.
Der volle Inhalt der QuelleRigau, Valérie. „Towards an Intermediate Grade in Glioma Classification“. In Diffuse Low-Grade Gliomas in Adults, 101–8. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55466-2_5.
Der volle Inhalt der QuellePurkait, Suvendu. „Pathology, Molecular Biology and Classification of Gliomas“. In Evidence based practice in Neuro-oncology, 37–55. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2659-3_3.
Der volle Inhalt der QuelleQuinones, Addison, und Anne Le. „The Multifaceted Glioblastoma: From Genomic Alterations to Metabolic Adaptations“. In The Heterogeneity of Cancer Metabolism, 59–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65768-0_4.
Der volle Inhalt der QuelleVelázquez Vega, José E., und Daniel J. Brat. „Molecular-Genetic Classification of Gliomas and Its Practical Application to Diagnostic Neuropathology“. In Diffuse Low-Grade Gliomas in Adults, 73–100. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55466-2_4.
Der volle Inhalt der QuelleOhgaki, Hiroko. „Contribution of Molecular Biology to the Classification of Low-Grade Diffuse Glioma“. In Diffuse Low-Grade Gliomas in Adults, 61–72. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-2213-5_5.
Der volle Inhalt der QuelleJohnson, Derek R., Caterina Giannini und Timothy J. Kaufmann. „Review of WHO 2016 Changes to Classification of Gliomas; Incorporation of Molecular Markers“. In Glioma Imaging, 127–38. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27359-0_8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Gliomas classification"
Ul Ain, Qurat, Iqra Duaa, Komal Haroon, Faisal Amin und Muhammad Zia ur Rehman. „MRI Based Glioma Detection and Classification into Low-grade and High-Grade Gliomas“. In 2021 15th International Conference on Open Source Systems and Technologies (ICOSST). IEEE, 2021. http://dx.doi.org/10.1109/icosst53930.2021.9683838.
Der volle Inhalt der QuelleKounelakis, M. G., M. E. Zervakis, G. C. Giakos, C. Narayan, S. Marotta, D. Natarajamani, G. J. Postma, L. M. C. Buydens und X. Kotsiakis. „Targeting brain gliomas energy metabolism for classification purposes“. In 2010 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2010. http://dx.doi.org/10.1109/ist.2010.5548526.
Der volle Inhalt der Quellevan der Voort, Sebastian R., Renske Gahrmann, Martin J. van den Bent, Arnaud J. P. E. Vincent, Wiro J. Niessen, Marion Smits und Stefan Klein. „Radiogenomic classification of the 1p/19q status in presumed low-grade gliomas“. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). IEEE, 2017. http://dx.doi.org/10.1109/isbi.2017.7950601.
Der volle Inhalt der QuelleGrzegorzek, Marcin, Marianna Buckan und Sigrid Horn. „Probabilistic classification of intracranial gliomas in digital microscope images based on EGFR quantity“. In SPIE Medical Imaging, herausgegeben von Josien P. W. Pluim und Benoit M. Dawant. SPIE, 2009. http://dx.doi.org/10.1117/12.811552.
Der volle Inhalt der QuelleTursynbek, Nurislam, Ghazal Ghahramany, Sheida Nabavi und Amin Zollanvari. „Predictive Meta-analysis of Multiple Microarray Datasets: An Application to Classification of Malignant Gliomas“. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2018. http://dx.doi.org/10.1109/bibm.2018.8621503.
Der volle Inhalt der QuelleSteiner, Gerald, R. A. Shaw, Lin-P'ing Choo-Smith, Wolfram Steller, Laryssa Shapoval, Gabriele Schackert, Stephan Sobottka, Reiner Salzer und Henry H. Mantsch. „Detection and grading of human gliomas by FTIR spectroscopy and a genetic classification algorithm“. In International Symposium on Biomedical Optics, herausgegeben von Anita Mahadevan-Jansen, Henry H. Mantsch und Gerwin J. Puppels. SPIE, 2002. http://dx.doi.org/10.1117/12.460789.
Der volle Inhalt der QuelleCipriano, Carolina L. S., Giovanni L. F. Da Silva, Jonnison L. Ferreira, Aristófanes C. Silva und Anselmo Cardoso De Paiva. „Classification of brain lesions on magnetic resonance imaging using superpixel, PSO and convolutional neural network“. In XV Workshop de Visão Computacional. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/wvc.2019.7640.
Der volle Inhalt der QuelleFelipe, Caio dos Santos, Thatiane Alves Pianoschi Alva, Ana Trindade Winck und Carla Diniz Lopes Becker. „An Approach in Brain Tumor Classification: The Development of a New Convolutional Neural Network Model“. In Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2023. http://dx.doi.org/10.5753/eniac.2023.233530.
Der volle Inhalt der QuelleKong, Jun, Lee Cooper, Fusheng Wang, Candace Chisolm, Carlos Moreno, Tahsin Kurc, Patrick Widener, Daniel Brat und Joel Saltz. „A comprehensive framework for classification of nuclei in digital microscopy imaging: An application to diffuse gliomas“. In 2011 8th IEEE International Symposium on Biomedical Imaging (ISBI 2011). IEEE, 2011. http://dx.doi.org/10.1109/isbi.2011.5872833.
Der volle Inhalt der QuelleChakrabarty, Satrajit, Pamela LaMontagne, Joshua Shimony, Daniel S. Marcus und Aristeidis Sotiras. „Non-invasive classification of IDH mutation status of gliomas from multi-modal MRI using a 3D convolutional neural network“. In Computer-Aided Diagnosis, herausgegeben von Khan M. Iftekharuddin und Weijie Chen. SPIE, 2023. http://dx.doi.org/10.1117/12.2651391.
Der volle Inhalt der Quelle