Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Glial scar formation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Glial scar formation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Glial scar formation"
Perez-Gianmarco, Lucila, und Maria Kukley. „Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury“. Cells 12, Nr. 14 (13.07.2023): 1842. http://dx.doi.org/10.3390/cells12141842.
Der volle Inhalt der QuelleNicaise, Alexandra M., Andrea D’Angelo, Rosana-Bristena Ionescu, Grzegorz Krzak, Cory M. Willis und Stefano Pluchino. „The role of neural stem cells in regulating glial scar formation and repair“. Cell and Tissue Research 387, Nr. 3 (25.11.2021): 399–414. http://dx.doi.org/10.1007/s00441-021-03554-0.
Der volle Inhalt der QuelleBao, Yi, Luye Qin, Eunhee Kim, Sangram Bhosle, Hengchang Guo, Maria Febbraio, Renee E. Haskew-Layton, Rajiv Ratan und Sunghee Cho. „CD36 is Involved in Astrocyte Activation and Astroglial Scar Formation“. Journal of Cerebral Blood Flow & Metabolism 32, Nr. 8 (18.04.2012): 1567–77. http://dx.doi.org/10.1038/jcbfm.2012.52.
Der volle Inhalt der QuelleZHANG, H., K. UCHIMURA und K. KADOMATSU. „Brain Keratan Sulfate and Glial Scar Formation“. Annals of the New York Academy of Sciences 1086, Nr. 1 (01.11.2006): 81–90. http://dx.doi.org/10.1196/annals.1377.014.
Der volle Inhalt der QuelleRenault-Mihara, Francois, Masahiko Mukaino, Munehisa Shinozaki, Hiromi Kumamaru, Satoshi Kawase, Matthieu Baudoux, Toshiki Ishibashi et al. „Regulation of RhoA by STAT3 coordinates glial scar formation“. Journal of Cell Biology 216, Nr. 8 (22.06.2017): 2533–50. http://dx.doi.org/10.1083/jcb.201610102.
Der volle Inhalt der QuelleGoussev, Staci, Jung-Yu C. Hsu, Yong Lin, Tjoson Tjoa, Nino Maida, Zena Werb und Linda J. Noble-Haeusslein. „Differential temporal expression of matrix metalloproteinases after spinal cord injury: relationship to revascularization and wound healing“. Journal of Neurosurgery: Spine 99, Nr. 2 (September 2003): 188–97. http://dx.doi.org/10.3171/spi.2003.99.2.0188.
Der volle Inhalt der QuelleHu, Rong, Jianjun Zhou, Chunxia Luo, Jiangkai Lin, Xianrong Wang, Xiaoguang Li, Xiuwu Bian et al. „Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury“. Journal of Neurosurgery: Spine 13, Nr. 2 (August 2010): 169–80. http://dx.doi.org/10.3171/2010.3.spine09190.
Der volle Inhalt der QuelleConrad, Sabine, Hermann J. Schluesener, Mehdi Adibzahdeh und Jan M. Schwab. „Spinal cord injury induction of lesional expression of profibrotic and angiogenic connective tissue growth factor confined to reactive astrocytes, invading fibroblasts and endothelial cells“. Journal of Neurosurgery: Spine 2, Nr. 3 (März 2005): 319–26. http://dx.doi.org/10.3171/spi.2005.2.3.0319.
Der volle Inhalt der QuelleChen, Xuning, und Weiping Zhu. „A Mathematical Model of Regenerative Axon Growing along Glial Scar after Spinal Cord Injury“. Computational and Mathematical Methods in Medicine 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/3030454.
Der volle Inhalt der QuelleGraboviy, O. M., T. S. Mervinsky, S. I. Savosko und L. M. Yaremenko. „Dynamics of changes in the representation of mesenchymal cells in the forming glial scar during dexamethasone application“. Reports of Morphology 30, Nr. 3 (19.09.2024): 25–32. http://dx.doi.org/10.31393/morphology-journal-2024-30(3)-03.
Der volle Inhalt der QuelleDissertationen zum Thema "Glial scar formation"
Manrique-Castaño, Daniel [Verfasser], Dirk Matthias [Gutachter] Hermann, Patrik [Gutachter] Krieger und Tracy D. [Gutachter] Farr. „Influence of the extracellular matrix protein Tenascin-C in the immune response, glial scar formation and ECM reorganization following cerebral ischemia in mice / Daniel Manrique-Castaño ; Gutachter: Dirk Matthias Hermann, Patrik Krieger, Tracy D. Farr ; International Graduate School of Neuroscience“. Bochum : Ruhr-Universität Bochum, 2020. http://d-nb.info/1223176096/34.
Der volle Inhalt der QuelleClain, Julien. „Impact des maladies métaboliques sur la cicatrice gliale, la plasticité cérébrale et la récupération fonctionnelle : exemple de l'accident vasculaire cérébral“. Electronic Thesis or Diss., La Réunion, 2024. https://elgebar.univ-reunion.fr/login?url=http://thesesenligne.univ.run/24_13_J_CLAIN.pdf.
Der volle Inhalt der QuelleIschemic stroke is the leading cause of death worldwide, with type II diabetes and obesity being significant risk factors. These metabolic diseases are particularly prevalent in Réunion Island, resulting in a higher incidence of stroke compared to the national average. Furthermore, diabetes and obesity worsen the outcomes of cerebral ischemia through unknown molecular and cellular mechanisms. During a stroke, cellular suffering and death trigger the activation of microglia (microgliosis) and astrocytes (astrogliosis), leading to the formation of a neuroprotective glial and fibrotic scar that isolates the damaged region from healthy brain tissue. However, this fibrosis can later hinder brain plasticity.Our research aimed to investigate the effects of metabolic disturbances on brain damage, reactive gliosis processes, fibrosis, and functional recovery in the context of stroke. For that, we induced cerebral ischemia in diabetic and obese mice (db/db model) and investigate the impact of their metabolic condition on reactive gliosis.Our findings clearly demonstrated that db/db mice exhibited an increased in lesion volume, cerebral oedema, hemorrhagic transformation, and blood-brain barrier dysfunction, in line with human clinical data. Furthermore, reactive gliosis and associated fibrosis were more severe and persistent in db/db mice. To identify the molecular and cellular mechanisms involved in astrogliosis during ischemic injury under disrupted metabolic conditions, we established several in vitro models: wound healing assay, oxygen and glucose deprivation (OGD), and treatment with agents mimicking some aspects of the metabolic dysfunction. Thus, astrocytes from the CLTT cell line were treated with methyglyoxal (MGO), a precursor of advanced glycation products which is elevated in diabetics. Our results clearly demonstrate that MGO treatment impairs the 'healing' process following mechanical injury. However, due to technical difficulties we were not able to draw any conclusions regarding the impact of MGO on astrocytic reactivity/healing in OGD condition. Finally, we tested the potential therapeutic effects of modulating the adiponectin pathway following cerebral ischemia in mice. However, our results showed no conclusive effects.In conclusion, our research provides compelling evidences that metabolic disturbances significantly exacerbate reactive gliosis and promote the persistence of fibrotic glial scarring in the ischemic hemisphere. Modulating glial scar and fibrosis may enhance brain repair mechanisms and functional recovery in both normoglycemic and hyperglycemic patients
Buchteile zum Thema "Glial scar formation"
Logan, Ann, und Martin Berry. „Cellular and Molecular Determinants of Glial Scar Formation“. In Advances in Experimental Medicine and Biology, 115–58. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0123-7_4.
Der volle Inhalt der QuelleFrontczak-Baniewicz, Malgorzata, Lidia Strużynska, Jaroslaw Andrychowski, Jolanta Opertowska, Dorota Sulejczak und Michal Walski. „Ultrastructural and Immunochemical Studies of Glial Scar Formation in Diabetic Rats“. In Brain Edema XIV, 251–55. Vienna: Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-98811-4_47.
Der volle Inhalt der QuellePilkinton, Sophie, T. J. Hollingsworth, Brian Jerkins und Monica M. Jablonski. „An Overview of Glaucoma: Bidirectional Translation between Humans and Pre-Clinical Animal Models“. In Animal Models in Medicine and Biology [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97145.
Der volle Inhalt der QuelleRodrígez-Barrera, Roxana, Adrián Flores-Romero, Julián García-Sánchez, Lisset Karina Navarro-Torres, Marcela Garibay-López und Elisa García-Vences. „Cytokines in Scar Glial Formation after an Acute and Chronic Spinal Cord Injury“. In Cytokines. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93005.
Der volle Inhalt der QuelleLucchinetti, C., und H. Lassmann. „The Neuropathology of Multiple Sclerosis“. In Glial Cell Development basic principles and clinical relevance second edition, 379–400. Oxford University PressOxford, 2001. http://dx.doi.org/10.1093/oso/9780198524786.003.0018.
Der volle Inhalt der QuelleEl-Mansoury, Bilal, Kamal Smimih, Youssef Ait Hamdan, Ahmed Draoui, Samira Boulbaroud und Arumugam Radhakrishnan Jayakumar. „Microglial Cells Function in the Central Nervous System“. In Physiology and Function of Glial Cells in Health and Disease, 60–82. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-9675-6.ch004.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Glial scar formation"
Bernick, Kristin B., und Simona Socrate. „Substrate Dependence of Mechanical Response of Neurons and Astrocytes“. In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53538.
Der volle Inhalt der Quelle