Auswahl der wissenschaftlichen Literatur zum Thema „Glass grid“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Glass grid" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Glass grid"

1

Schlaich, Jörg, und Hans Schober. „Glass-Covered Grid-Shells“. Structural Engineering International 6, Nr. 2 (Mai 1996): 88–90. http://dx.doi.org/10.2749/101686696780495716.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gao, Bo, Min Wang und Zeng Heng Hao. „Bending Behavior of Glass Fiber Grid Reinforced Gussasphalt“. Applied Mechanics and Materials 744-746 (März 2015): 754–57. http://dx.doi.org/10.4028/www.scientific.net/amm.744-746.754.

Der volle Inhalt der Quelle
Annotation:
In combination with the composite material technology, add the glass fiber grid into gussasphalt deck pavement system to form glass fiber grid reinforced gussasphalt. Analysis shows that adding the grid can increase the bending performance. Three point bending test was did to do verification and results were indicate that glass fiber grid can improve the anti-bending strength and anti-bending strain in high temperature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Chang, Jung-Jung, Jhih-Wei Huang, Chun-Feng Lin, Shun-Wei Liu und Chih-Hsin Chen. „Enhancing the signal contrast ratio and stability of liquid crystal-based sensors by using fine grids made by photolithography of photoresists“. Analyst 146, Nr. 12 (2021): 3834–40. http://dx.doi.org/10.1039/d1an00332a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Tan, Yong Zi, und John L. Rubinstein. „Through-grid wicking enables high-speed cryoEM specimen preparation“. Acta Crystallographica Section D Structural Biology 76, Nr. 11 (13.10.2020): 1092–103. http://dx.doi.org/10.1107/s2059798320012474.

Der volle Inhalt der Quelle
Annotation:
Blotting times for conventional cryoEM specimen preparation complicate time-resolved studies and lead to some specimens adopting preferred orientations or denaturing at the air–water interface. Here, it is shown that solution sprayed onto one side of a holey cryoEM grid can be wicked through the grid by a glass-fiber filter held against the opposite side, often called the `back', of the grid, producing a film suitable for vitrification. This process can be completed in tens of milliseconds. Ultrasonic specimen application and through-grid wicking were combined in a high-speed specimen-preparation device that was named `Back-it-up' or BIU. The high liquid-absorption capacity of the glass fiber compared with self-wicking grids makes the method relatively insensitive to the amount of sample applied. Consequently, through-grid wicking produces large areas of ice that are suitable for cryoEM for both soluble and detergent-solubilized protein complexes. The speed of the device increases the number of views for a specimen that suffers from preferred orientations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hojdys, Łukasz, und Piotr Krajewski. „Experimental Tests on Strengthened Masonry Vaults“. Applied Mechanics and Materials 578-579 (Juli 2014): 1396–99. http://dx.doi.org/10.4028/www.scientific.net/amm.578-579.1396.

Der volle Inhalt der Quelle
Annotation:
This paper reports and discusses the results of experiments performed on masonry barrel vaults strengthened externally with a composite material. The vaults characterized by 125-mm thickness, 2000-mm internal span and 730-mm rise, were built of solid clay bricks and lime mortar. As a strengthening glass fiber grids or carbon fiber grids were used. They were embedded in a polymer-cement mortar at the vaults extrados. The main aim of presented research was to determine load-carrying capacity and examine failure modes of tested specimens. The results of performed tests show that observed failure modes depended on reinforcement ratio of strengthening layer. The specimen strengthened with one layer of glass fiber grid failed due to fibers rupture, whereas the vault strengthened with carbon fiber grid failed due to sliding along a mortar joint just above the abutment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tibebu, Haileleol, Jamie Roche, Varuna De Silva und Ahmet Kondoz. „LiDAR-Based Glass Detection for Improved Occupancy Grid Mapping“. Sensors 21, Nr. 7 (24.03.2021): 2263. http://dx.doi.org/10.3390/s21072263.

Der volle Inhalt der Quelle
Annotation:
Creating an accurate awareness of the environment using laser scanners is a major challenge in robotics and auto industries. LiDAR (light detection and ranging) is a powerful laser scanner that provides a detailed map of the environment. However, efficient and accurate mapping of the environment is yet to be obtained, as most modern environments contain glass, which is invisible to LiDAR. In this paper, a method to effectively detect and localise glass using LiDAR sensors is proposed. This new approach is based on the variation of range measurements between neighbouring point clouds, using a two-step filter. The first filter examines the change in the standard deviation of neighbouring clouds. The second filter uses a change in distance and intensity between neighbouring pules to refine the results from the first filter and estimate the glass profile width before updating the cartesian coordinate and range measurement by the instrument. Test results demonstrate the detection and localisation of glass and the elimination of errors caused by glass in occupancy grid maps. This novel method detects frameless glass from a long range and does not depend on intensity peak with an accuracy of 96.2%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Walck, Scott D. „Preparing Powders For Electron Diffraction Studies“. Microscopy Today 8, Nr. 9 (November 2000): 37. http://dx.doi.org/10.1017/s1551929500059472.

Der volle Inhalt der Quelle
Annotation:
Questions often come up concerning the best way to prepare powders for electron diffraction analysis in the TEM. This is actually fairly simple:1) Take an oxide powder, grind it up with mortar and pestie and take a carbon coated grid and swipe it across the fnes. Two glass slides can also use to grind up the powder.2) A number of materials can be evaporated onto a carbon coated grid or onto a cleaved NaCI sample and then float that off on water onto a grid.3) A molybdenum wire can be smoked in air to provide crys tals. If the wire is left in the smoke long enough, there will probably be enough crystal to cover a grid. Heat the wire across the terminals of an evaporator or heat with a torch to generate the white smoke. Thus MoO3 sample will pro- vide a good rotation calibration sample. Magnesium can also be burned to produce MgO crystals.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kritzinger, S., J. C. Lombaard und C. J. Bedeker. „Diffusion of TEM grid material into amorphous silicon films“. Proceedings, annual meeting, Electron Microscopy Society of America 48, Nr. 4 (August 1990): 660–61. http://dx.doi.org/10.1017/s0424820100176435.

Der volle Inhalt der Quelle
Annotation:
While investigating the silicide formation reaction between thin bilayers of amorphous Si (a-Si) and Cr, an unintended interaction occurred between the specimens and the supporting TEM grids. In an attempt to understand this phenomenon, the interaction between a single film of a-Si and TEM grids made of Cu, Ni, Au and Mo were investigated by in situannealing in a Siemens Elmiskop 101. The 60 nm films, prepared by e-beam evaporation of pure Si onto glass substrates, covered with an acetone-soluble release agent, were amorphous.In Fig. 1 the interaction between the a-Si film and a Cu TEM grid is shown. Areas I, II, III and IV in (a) show different stages of the interaction, area IV being closest to the Cu grid bar, and area I being pure a-Si. The reaction started at about 600°C by crystallisation of the a-Si film at different spots in contact with the grid bars, and fanned out from these nucleation sites (area II).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

BALIKOĞLU, Fatih, Tayfur Kerem Demircioğlu und Ali IŞIKTAŞ. „Mechanical Properties Of Sandwich Composites Used For Aerofoil Shell Structures Of Wind Turbine Blade“. ICONTECH INTERNATIONAL JOURNAL 5, Nr. 1 (28.03.2021): 26–37. http://dx.doi.org/10.46291/icontechvol5iss1pp26-37.

Der volle Inhalt der Quelle
Annotation:
The grid-scored foams contribute significantly to the overall mechanical properties of the sandwich structures, such as aerofoil shell structure of wind turbine blades which are subjected to different loads under operating conditions. The goal of the present paper is to examine the four-point bending, flatwise and edgewise compression and in-plane shear behaviour of sandwich panels composed of composite face sheets of E-glass/ bisphenol-A epoxy resin and plain and grid-scored PVC foams. The four-point bending failure load of the grid-scored foamed sandwich beams increased by 28.1% compared to the plain foamed ones. The flatwise compression strength of samples with grid-scored foam increased by 546% compared to plain foamed samples. The resin grids contributed to an increase in the flat-wise compression stress inducing the core crushing. Under the edgewise compression load, using the grid-scored foam increased the maximum load values by only about 2.9% relative to the plain foam. The reason for this small difference can be addressed as the facings are more effective in carrying the edgewise loadings. With the use of the grid-scored foam, an increase of 38.2% was obtained in-plane shear strength compared to plain foamed sandwich beams. The resin grids improved bonding between the facings and PVC foam.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ayadi, Azzedine, F. Benhaoua, Laurent Le Gendre, Ratiba Benzerga und N. Stiti. „Gravimetric and Differential Thermal Analysis of Cullet-Based Glass Foams“. Key Engineering Materials 617 (Juni 2014): 113–16. http://dx.doi.org/10.4028/www.scientific.net/kem.617.113.

Der volle Inhalt der Quelle
Annotation:
The manufacture of foam glass from waste glass recycling is a way that fits with the objective of environmental protection and maximum recycling of household waste. The energy savings achieved through the use of cullet result in a decrease in air pollution, especially carbon dioxide (CO2), and reduced the price of glass. Normal 0 21 false false false FR X-NONE AR-SA MicrosoftInternetExplorer4 The purpose of this study is to identify the range of foaming gas evolution and its influence on the material developed. This analysis was performed using a type apparatus NETZSCH STA 409PC. The analyzes were performed on the same operating conditions of sample preparation at a temperature of 850 °C with a heating rate of 6.5 °C / min The product has excellent thermal properties, which favors its use in the construction industry. Reuse of this waste has far-reaching, it is not limited to energy saving in the manufacture of building materials on an industrial scale, but it contributes significantly to protecting the environment s accentuating the companion against pollution. Thermal insulation can both reduce your energy consumption for heating and / or air conditioning and increase your comfort. But that's not all: the insulation is also environmentally beneficial because, by reducing consumption, it helps preserve energy resources and reduce emissions of greenhouse gases. Thus, the thermal insulation is interesting in terms of environmental protection, comfort and financial savings. <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true" DefSemiHidden="true" DefQFormat="false" DefPriority="99" LatentStyleCount="267"> <w:LsdException Locked="false" Priority="0" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Normal"/> <w:LsdException Locked="false" Priority="9" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="heading 1"/> <w:LsdException Locked="false" Priority="10" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Title"/> <w:LsdException Locked="false" Priority="11" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/> <w:LsdException Locked="false" Priority="22" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Strong"/> <w:LsdException Locked="false" Priority="20" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/> <w:LsdException Locked="false" Priority="59" SemiHidden="false" UnhideWhenUsed="false" Name="Table Grid"/> <w:LsdException Locked="false" Priority="1" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 1"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 1"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 1"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/> <w:LsdException Locked="false" Priority="34" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/> <w:LsdException Locked="false" Priority="29" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Quote"/> <w:LsdException Locked="false" Priority="30" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 1"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 1"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 2"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 2"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 2"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 2"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 2"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 3"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 3"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 3"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 3"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 3"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 4"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 4"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 4"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 4"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 4"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 5"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 5"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 5"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 5"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 5"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 6"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 6"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 6"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 6"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 6"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/> <w:LsdException Locked="false" Priority="19" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/> <w:LsdException Locked="false" Priority="21" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/> <w:LsdException Locked="false" Priority="31" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/> <w:LsdException Locked="false" Priority="32" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/> <w:LsdException Locked="false" Priority="33" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Book Title"/> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tableau Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;}
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Glass grid"

1

Najm, Riyadh K. „Wire-grid modelling of glass-mounted vehicular antennas at VHF“. Thesis, University of Liverpool, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239950.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jadhav, Prakash. „Analytical and experimental investigations of the impact response of grid-stiffened E-glass/polypropylene (PP) composite panels /“. Full text available from ProQuest UM Digital Dissertations, 2005. http://0-proquest.umi.com.umiss.lib.olemiss.edu/pqdweb?index=0&did=1276391131&SrchMode=1&sid=2&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1185301529&clientId=22256.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Herrero, Sofia Helena. „Framing Hudson Square: A Stair Encloses a Converging Grid in the City“. Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/25287.

Der volle Inhalt der Quelle
Annotation:
This thesis explores an alternate typology for a residential high rise in the Hudson Square neighborhood in Manhattan. The units that make up the building are organized with stairs and corridors placed along the interior perimeter of the unit which both bound the central floor space and expose it, creating a layered vertical circulation space around a central, permeable core. The collective organization of units within the building recapitulate their interior organization to form the building object creating a whole that is governed by the same organizational rules as the parts. The building is created as an object in the city meant to frame the duality between transparency and reflection, between lines and surfaces and ultimately between exhibition and anonymity.
Master of Architecture
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mikl, Marek. „Návrh přídavného pokládacího zařízení pro aplikaci rolí skelné geomříže GlasGrid®“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442818.

Der volle Inhalt der Quelle
Annotation:
The diploma thesis deals with the design of an additional device for the application of glass grid rolls GlasGrid® and functional calculations. Diploma thesis was created in collaboration with company Saint-Gobain ADFORS. The designed equipment must be able to lay all the currently produced sizes of the rolls, connectable to the widest possible range of laying machines and must be possible to transport the equipment over a longer distance. The laying equipment must also comply with the strength analysis and functional calculations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Al-Khayyat, Farah Nabeel Mohammed Tahir. „Surface modification of titanium implants by grit-blasting with novel bioactive glasses“. Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/33943.

Der volle Inhalt der Quelle
Annotation:
Introduction: The survival of dental implants depends on osseointegration. Modifications to the implant surface are attractive for promoting the success of the implant. Abrading the surface of the implant with bioactive glass is an attractive option for improving the speed of osseointegration. Aims: To develop a bioactive glass that has the ability to enhance the surface roughness of the implant by embedding particles into the surface and to investigate the effect of grit blast parameters on the removal of the titanium from the surface. Methods: Three glasses based on SiO2-CaO-Na2O-P2O5-CaF2 were synthesized by a melt quench technique. The glasses were characterised and investigated for their bioactivity. Titanium discs were abraded with coarse glass particles by using a grit blast technique with different parameters, such as, distance, air pressure and speed. The depth, width of the abraded line and surface roughness (Ra) were measured by light profilometer. The distribution of the glasses on the titanium surface was measured by SEM-EDX. The biocompatibility of the abraded discs was tested in vitro using MC3T3-E1 cell line. Results: All glasses exhibited an amorphous structure with varied bioactivity. Changing the abrasion parameters influenced the amount of titanium removed and the surface coverage. The harder the glass the lower the amount of titanium removed and the wider the width of the abraded area. The Ra was significantly increased from 0.1μm to 1.6μm. The SEM-EDX analysis confirmed that the glasses were widely distributed and a higher coverage was seen with the harder glass. The abraded discs showed good biocompatibility in vitro. Conclusions: The designed compositions were successfully modifying the surface of the titanium. They are abrasive enough to significantly embed into the titanium surface by using the grit blast technique and increase their surface roughness. TheIntroduction: The survival of dental implants depends on osseointegration. Modifications to the implant surface are attractive for promoting the success of the implant. Abrading the surface of the implant with bioactive glass is an attractive option for improving the speed of osseointegration. Aims: To develop a bioactive glass that has the ability to enhance the surface roughness of the implant by embedding particles into the surface and to investigate the effect of grit blast parameters on the removal of the titanium from the surface. Methods: Three glasses based on SiO2-CaO-Na2O-P2O5-CaF2 were synthesized by a melt quench technique. The glasses were characterised and investigated for their bioactivity. Titanium discs were abraded with coarse glass particles by using a grit blast technique with different parameters, such as, distance, air pressure and speed. The depth, width of the abraded line and surface roughness (Ra) were measured by light profilometer. The distribution of the glasses on the titanium surface was measured by SEM-EDX. The biocompatibility of the abraded discs was tested in vitro using MC3T3-E1 cell line. Results: All glasses exhibited an amorphous structure with varied bioactivity. Changing the abrasion parameters influenced the amount of titanium removed and the surface coverage. The harder the glass the lower the amount of titanium removed and the wider the width of the abraded area. The Ra was significantly increased from 0.1μm to 1.6μm. The SEM-EDX analysis confirmed that the glasses were widely distributed and a higher coverage was seen with the harder glass. The abraded discs showed good biocompatibility in vitro. Conclusions: The designed compositions were successfully modifying the surface of the titanium. They are abrasive enough to significantly embed into the titanium surface by using the grit blast technique and increase their surface roughness. The glass abraded discs show both good bioactivity and biocompatibility in vitro.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sagnol, Loba. „Experimental and analytical study of the reinforcement of pavements by glass fibre grids“. Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD042.

Der volle Inhalt der Quelle
Annotation:
Cette thèse traite de l’effet des grilles en fibre de verre, utilisées pour renforcer les structures routières, sur la liaison entre deux couches d’enrobés bitumineux, la durée de vie en fatigue et le module de rigidité des ´éprouvettes cylindriques renforcées, ainsi que sur les déflexions mesurées sur une section de route renforcée in situ. Des essais de cisaillement (LEUTNER) ainsi que de module et de fatigue (ITT) ont été conduit sur des éprouvettes renforcées et non renforcées en utilisant différentes grilles, différentes émulsion ainsi que différentes quantités d’émulsion. Pour ces essais, une surface de test a été construite in-situ, de laquelle les ´éprouvettes ont ´été extraites. Une section de route in-situ a ´également été construite, renforcée avec 3 différentes grilles et avec deux sections de références. Les déflexions de la chaussée ont été déterminées avant et après les travaux. Une modélisation de la structure a été faites basée sur les résultats des mesures de déflexion
This PhD-study evaluates the impact of glass fibre grids, used to reinforced asphalt structures, on the bonding between two asphalt layers, the fatigue life and the stiffness modulus of reinforced cylindrical specimens as well as on the deflections measured on a reinforced in-situ road section. Shear tests (LEUTNER) as well as modulus-tests and fatigue-tests (ITT) were conducted on reinforced and unreinforced specimens, using different grids, different emulsions and different emulsion quantities. For this tests, an outdoor test-surface was constructed, from which the specimens were extracted. A in-situ road test section was also constructed, reinforced with 3 different grids and having two reference sections. The deflections of the road were determined before and after the construction works. A modelisation of the structure, based on the deflection measurements, was made
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Liu, Guixian. „Modélisation aux éléments discrets du renforcement des bétons bitumineux par des grilles en fibre de verre“. Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD019.

Der volle Inhalt der Quelle
Annotation:
L’effet du renforcement de la grille en fibre de verre sur le béton bitumineux est étudié numériquement par la méthode des éléments discrets. En ce qui concerne les matériaux quasi-fragiles, l’élasticité de la modélisation est calibrée et le comportement à la rupture est vérifié par une mécanique de la rupture élastique Le comportement et la défaillance de l’interface prédominent dans la fracture des échantillons, ce qui donne lieu à un modèle d’interface simplifié. L’étalonnage des paramètres sur le module de Young et le coefficient de Poisson est effectué entre le modèle d’interface et la méthode des éléments discrets. Grâce à l'ajustement avec les résultats expérimentaux, la résistance de l'interface et le taux de libération d'énergie sont également identifiés par la méthode des éléments discrets et un modèle d'interface simplifié. En comparaison avec la mécanique de la rupture élastique linéaire, la rupture de l'interface présente une plus grande quantité du taux de libération d'énergie. La force et le taux de libération d'énergie sont réduits en raison de l'application de la grille en fibre de verre. Le comportement en fatigue est étudié à l’aide de simulations d’essais de fatigue en flexion en 4 points. Le modèle de fatigue de Bodin 'L2R' est adapté à la méthode des éléments discrets. L'effet de chaque paramètre sur l'évolution des dommages est étudié séparément. L’effet d’interface est observé lors de la prolongation de la résistance à la fatigue de toutes les phases. Les essais monotoniques et les essais de fatigue indiquent qu’une bonne liaison entre deux couches de béton bitumineux est importante pour la résistance de rupture
The effect of fiberglass grid reinforcement in asphalt concrete is studied numerically by discrete element method in this work. Firstly, concerning on the quasi-brittle material, the elasticity of modelling are calibrated, and the rupture behaviour is verified with linear elastic fracture mechanics. Then the simulations of wedge splitting tests are performed under monotonic load. The interface elasticity and failure dominate in the fracture propagation of samples, which gives rise to a simplified interface model. The parameter calibration on Young’s modulus and Poisson’s ratio is conducted between interface model and discrete element method. Through the fitting with experimental results, the interface strength and energy release rate are also identified by discrete element method and simplified interface model. Comparing with linear elastic fracture mechanics, the interface rupture presents more released energy. The strength and energy release rate are reduced because of the application of the fiber glass grid. The fatigue behaviour is studied by simulations of 4-point bending fatigue tests. Bodin’s fatigue model 'L2R' is adapted with discrete element method. The effect of each parameter on the damage evolution is studied respectively. The fiber glass grid helps to extent the fatigue life mainly after the fatigue cracks cross the grid. The interface effect is observed on prolonging the fatigue life of all the phases. From both monotonic and fatigue tests, it indicates that good bonding between two asphalt concrete layers is important to the resistance of rupture
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kaliariková, Beáta. „Budoucnost brněnského výstaviště“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-391845.

Der volle Inhalt der Quelle
Annotation:
The theme of diploma thesis is design of convention center situated in area of BVV Trade Fairs Brno. The location of designed buildings is reacting on surrounding buildings and important compositional axes.The convention center is crossing axis leading from historical entrance and its front glass facades open the view for dominant feature of hotel zone in south part of area.The convention center is designed as two three-storey buildings connected by bridge with sightseeing terrace and main entrance underneath. The bigger building contains main convention hall with a maximal capacity of 2300 people, two halls with a capacity of 500 and 600 people and other conference and meeting rooms with various capacity. The other building contains plenary hall with a capacity of 1100 in circular seating arrangement. The buildings are connecting to pavillions C and B, which provide spaces for opening and exhibiton parts of cenvention events. Designed convention center provides spaces for big diversity of conventional events thanks to its capacities and location.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ferré, Antoine. „Élaboration et caractérisation 3D de l’endommagement dans les composites amorphe-cristallins métalliques“. Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0038.

Der volle Inhalt der Quelle
Annotation:
Les verres métalliques ont commencé à être produit dans les années 1960 et sous forme massive dans les années 1980. De nombreuses études se sont intéressées à ces matériaux sous leur forme amorphe et ont conclu qu’ils avaient une forte résistance mécanique mais présentaient un comportement très fragile. Dans le cadre du projet EDDAM débuté en 2011, ces matériaux ont été introduits sous forme de petites sphères dans une matrice d’aluminium. Le premier objectif de notre étude est de voir si le verre métallique sous cette forme permet de le rendre peu fragile. Le second objectif est de trouver une alternative aux renforts céramique dans les composites à matrice métallique qui présentent une faible cohésion à l’interface matrice/inclusion. Dans le but de caractériser l’endommagement dans des nouveaux composites amorphe-cristallins métalliques, la tomographie aux rayons X a été utilisée. Cette technique permet de caractériser de manière non destructive l’endommagement des matériaux et de le visualiser en 3D. Cela apporte une contribution à l’étude des matériaux composites par rapport aux techniques classiques utilisées. L’objectif général de cette thèse a été d’étudier l’endommagement en termes d’amorçage, de croissance et de coales- cence des matériaux composites amorphe-cristallins métallique par tomographie aux rayons X lors d’essais de traction monotone in situ. Les matériaux sélectionnés sont constitués d’une matrice aluminium ("molle" de type 1070A ou "dure" de type 5083) et de renforts en verre métallique Zr57Cu20Al10Ni8Ti5 de taille peu dispersée et répartis de manière homogène, avec différentes fractions volumiques (1%, 4% et 10%). Les matériaux composites ont été élaborés par la voie de la métallurgie des poudres au Spark Plasma Sintering (SPS) suivi d’une étape d’extrusion à chaud. Une attention particulière a été portée sur la caractérisation microstructurale des constituants de base. L’analyse qualitative a permis de comparer l’ensemble des composites fabriqués au SPS et ceux extrudés à chaud après SPS. Les différents modes d’amorçage de l’endommagement ont été observés ainsi que la croissance et la coa- lescence amenant la rupture des composites. L’analyse quantitative a été essentiellement consacrée au premier stade de l’endommagement. La croissance et la coalescence étant très rapide, il a été difficile de les suivre lors des essais interrompus. La modélisation d’un composite amorphe-cristallin métallique à matrice molle a été introduite dans le but de reproduire l’endommagement observé lors des analyses expérimentales. Cette première approche nécessite d’être approfondie dans le but de prédire, compte tenu des propriétés mécaniques des différentes phases et de la fraction volumique des renforts, le mode d’endommagement préférentiel apparaissant dans les composites étudiés. Elle montre cependant les prémices d’une modélisation innovante basée sur la microstructure expérimentale
Metallic glasses have been produced in the 1960s and bulk metallic glasses in the 1980s. Many studies, focused on these materials in their amorphous state, concluded that they had high mechanical strength but shown low ductility. As part of EDDAM project that started in 2011, these materials were introduced as small particles in an aluminum matrix. The first objective of this study is to see if the metallic glass is less brittle in this form. The second objective is to find an alternative of ceramic reinforcements in metal matrix composites. These materials have low cohesion at the matrix/inclusion interface. In order to characterize the damage in new amorphous-crystalline composite, X-ray tomography was used. This allows to characterize damage in materials and to obtain a 3D viewing. The main objective of this thesis was to study damage (nucleation, growth and coalescence) in composite materials using X-ray tomography during tensile tests. Selected materials are constituted of an aluminum matrix and small metallic glass reinforcements (Zr57Cu20Al_10Ni8Ti5). Composites with different volume fractions (from 1vol.% to 10vol.%) were prepared by Spark Plasma Sintering (SPS) and hot extrusion. A particular attention was paid to the microstructural characterization of the basic constituents. Qualitative analysis was used to compare SPS composites with SPS plus hot extrusion composites. Damage nucleation, growth and coalescence were observed. Quantitative analysis was mainly devoted to the first damage step. Growth and coalescence were difficult to follow due to fast rupture and interrupted tensile tests. The modeling of an amorphous-crystalline composite has been introduced in order to reproduce experimental damage analyses. The first approach requires further investigation to predict damage with different volume fractions. However, this part shows the beginning of an innovative model based on the experimental microstructure
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Knödlseder, Jürgen. „L'exploration du ciel gamma“. Habilitation à diriger des recherches, Université Paul Sabatier - Toulouse III, 2008. http://tel.archives-ouvertes.fr/tel-00271387.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Glass grid"

1

Parrott, Charles. Aluminum replacement windows with sealed insulating glass and trapezoidal muntin grids. Washington, D.C: National Park Service, U.S. Dept. of the Interior, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Notebooks, Cool. Notebook: Scientist Optimist Pessimist Glass Gift 120 Pages, 6X9 Inches, Dot Grid. Independently Published, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hasluck, Paul. How To Blow, Etch, Bore, and Grind Glass. University Publishing House, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hasluck, Paul N. How to Blow, Etch, Bore and Grind Glass. University Publishing House, Inc., 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mann, Jolán. Zagrebe, ti si moj rodni grad... Herausgegeben von Franciska Ćurković-Major und Kristina Katalinić. Filozofski fakultet u Zagrebu, FF-Press, 2019. http://dx.doi.org/10.17234/9789531759038.

Der volle Inhalt der Quelle
Annotation:
Dana 2. lipnja 2018. godine navršila se deseta obljetnica od smrti mađarsko-francuskog pisca, publicista i povjesničara Ferenca Fejtöa, a 31. kolovoza 2019. stodeseta obljetnica njegova rođenja. Dvostruki jubilej Katedra za hungarologija Filozofskog fakulteta Sveučilišta u Zagrebu prigodno je obilježila manjom znanstvenom konferencijom na kojoj smo željeli evaluirati vrijednost Fejtöva književnog i publicističkog rada, a potom ga staviti i u nova razmatranja. Fejtöv književni prvijenac, djelo Sentimentalno putovanje, koje je na mađarskom jeziku prvi puta objavljeno 1936. godine, a zatim nakon dugog prešućivanja i 1989, da bi od 2003. bilo dostupno i na hrvatskom, posvećeno je Hrvatskoj, odnosno Zagrebu gdje je pisac kao dječak – prije svega u vrijeme školskih praznika – kod roditelja svoje majke proveo ključna razdoblja svoga života. Zagrebački doživljaji imali su na njega snažan utjecaj tijekom cijelog njegova života, pa je tako i kasnije ostao odan Hrvatskoj. Za vrijeme domovinskog rata Fejtö je u francuskom tisku redovito davao glas gledištima koja su podupirala samostalnost Hrvatske. Hrvatska država 2007. godine odlikovala je Fejtöa redom Danice hrvatske s likom Marka Marulića za osobite zasluge u kulturi. Stoga smo smatrali da bi održavanje simpozija i objavljivanje zbornika s izlaganjima koja smo na njemu čuli moglo pridonijeti dostojanstvenom obilježavanju ove dvije obljetnice.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Glass grid"

1

Maliszewski, Maciej, Przemysław Harasim, Dominika Maliszewska und Adam Zofka. „Evaluation of Long-term Glass-grid Test Section using a Unique Method“. In Materials and Infrastructures 2, 45–58. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119318613.ch4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Roy, Satyajit, und Mahabir Dixit. „Use of Glass Grid and SAMI as Reinforced Interlayer System in Runway“. In Lecture Notes in Civil Engineering, 283–94. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6713-7_23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zheng, C. C., und A. Najd. „Effects of Glass Fiber/Grid Reinforcement on the Crack Growth Rate of an Asphalt Mix“. In 7th RILEM International Conference on Cracking in Pavements, 1145–55. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4566-7_109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yamane, M. „Grin Glasses“. In Sol-Gel Technologies for Glass Producers and Users, 145–48. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-387-88953-5_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yamane, M. „Properties of Grin Materials“. In Sol-Gel Technologies for Glass Producers and Users, 365–67. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-387-88953-5_48.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Graham, Stephen. „“Global grids of glass: on global cities, telecommunications and planetary urban networks”“. In The Globalizing Cities Reader, 161–68. 2nd Edition. | New York : Routledge, [2018] |: Routledge, 2017. http://dx.doi.org/10.4324/9781315684871-23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Weiser, Steven M. „Fine-Grind Cullet Technology, Part 2: Results of Plant Production Trials using Fine-Grind cullet“. In A Collection of Papers Presented at the 55th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 16, Issue 2, 101–4. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470314661.ch12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rodriguez, Damian E. „Fine-Grind Cullet Technology, Part 1: Application of Differential Grinding for Fine cullet Production and Contaminant Removal“. In A Collection of Papers Presented at the 55th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 16, Issue 2, 96–100. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470314661.ch11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Nguyen, Mai Lan, Cyrille Chazallon, Mehdi Sahli, Georg Koval, Pierre Hornych, Daniel Doligez, Armelle Chabot, Yves Le Gal, Laurent Brissaud und Eric Godard. „Design of Reinforced Pavements with Glass Fiber Grids: From Laboratory Evaluation of the Fatigue Life to Accelerated Full-Scale Test“. In Lecture Notes in Civil Engineering, 329–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55236-7_34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jeon, H., J. H. Nam, D. Park, Y. H. Kim, W. T. Kim, Y. K. Ki, D. H. Kim, J. H. Lee und D. W. Kim. „Utility of the Equivalent Depth Concept for in-vivo Dosimetry With No Build-up on the Skin Using Glass Rod Dosimeter (GRD) : Preliminary Results“. In IFMBE Proceedings, 1884–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29305-4_496.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Glass grid"

1

Foster, Paul, Zhenghong Sun, Jong Jin Park und Benjamin Kuipers. „VisAGGE: Visible angle grid for glass environments“. In 2013 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2013. http://dx.doi.org/10.1109/icra.2013.6630875.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zamarreño, C. R., C. Martelli, V. H. V. Baroncini, E. N. dos Santos, M. J. da Silva, R. E. M. Morales, I. R. Matias und F. J. Arregui. „Two-Phase Flow Imaging by means of an 8x8 Optical Fiber Bragg Grating Grid“. In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/bgpp.2014.bm3d.3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Shwehdi, M. H., und S. Raja Mohamed. „Establishing a comfort environment for King Faisal University buildings using energy efficient glass windows“. In 2017 Saudi Arabia Smart Grid (SASG). IEEE, 2017. http://dx.doi.org/10.1109/sasg.2017.8356512.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Meetei, Toijam Sunder, Narayanan Balaji, Shanmugam Boomadevi und Krishnamoorthy Pandiyan. „Designing Multi-Channel Quasi-Phase Matching Devices for Standard Optical Frequency Grid“. In Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/bgppm.2018.jtu5a.34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Maliszewski, Maciej, Przemysław Harasim, Dominika Maliszewska und Adam Zofka. „Performance of long term glass-grid test section in Warsaw“. In The 9th International Conference "Environmental Engineering 2014". Vilnius, Lithuania: Vilnius Gediminas Technical University Press “Technika” 2014, 2014. http://dx.doi.org/10.3846/enviro.2014.160.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yi Chu, Chun, und Kerwin Wang. „Glass Ball Grid Array Arrangement and Characterization for Capacitive Proximity Sensor“. In 2017 International Conference on Information, Communication and Engineering (ICICE). IEEE, 2017. http://dx.doi.org/10.1109/icice.2017.8478878.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gao, Bo, Min Wang und Zengheng Hao. „Laboratory investigation of the Bending properties of Glass Fiber Grid Reinforced Gussasphalt“. In 2015 6th International Conference on Manufacturing Science and Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmse-15.2015.22.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yamada, Itsunari, Naoto Yamashita, Toshihiko Einishi, Mitsunori Saito, Kouhei Fukumi und Junji Nishii. „Direct imprinting on chalcogenide glass and fabrication of infrared wire-grid polarizer“. In SPIE Microtechnologies, herausgegeben von Jean-Marc Fédéli, Laurent Vivien und Meint K. Smit. SPIE, 2013. http://dx.doi.org/10.1117/12.2016652.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Yao, Yu, Yu Shao, Jiliang Zhang und Jie Zhang. „Design of Glass-Integrated Grid Antenna Using CMA for Multiband Indoor Network“. In 2020 International Symposium on Antennas and Propagation (ISAP). IEEE, 2021. http://dx.doi.org/10.23919/isap47053.2021.9391314.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jaus, J., H. Pantsar, O. F. Adurodija, B. Li, B. Regaard, H. Herfurth und D. Doble. „Formation of a conductive grid on thin film modules glass by laser-patterning“. In 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5614211.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Glass grid"

1

Hicks, M. Design of a Carbon Fiber Composite Grid Structure for the GLAST Spacecraft Using a Novel Manufacturing Technique. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/826881.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie