Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Girders“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Girders" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Girders"
Shawky, Wael, und Ghaidaa Nabil. „Experimental and numerical study for the post buckling behaviour of plate girders subjected to bending and shear“. MATEC Web of Conferences 162 (2018): 04027. http://dx.doi.org/10.1051/matecconf/201816204027.
Der volle Inhalt der QuelleEzzeldin Yazeed Sayed-Ahmed. „Design aspects of steel I-girders with corrugated steel webs“. Electronic Journal of Structural Engineering 7 (01.06.2007): 27–40. http://dx.doi.org/10.56748/ejse.772.
Der volle Inhalt der QuelleXu, Jun, Jian Li, Yu Ye, Yuanqing Xu und Chong Li. „Dynamic Response of a Long-Span Double-Deck Suspension Bridge and Its Vibration Reduction“. Buildings 13, Nr. 7 (14.07.2023): 1791. http://dx.doi.org/10.3390/buildings13071791.
Der volle Inhalt der QuelleAlmoosi, Y., und N. Oukaili. „The Response of a Highly Skewed Steel I-Girder Bridge with Different Cross-Frame Connections“. Engineering, Technology & Applied Science Research 11, Nr. 4 (21.08.2021): 7349–57. http://dx.doi.org/10.48084/etasr.4137.
Der volle Inhalt der QuelleMahmoud, Thamir K., und Qassim Ali Husain Al-Quraishy. „EXPERIMENTAL AND THEORETICAL INVESTIGATIONS FOR BEHAVIOR OF PRECAST CONCRETE GIRDERS WITH CONNECTIONS“. Journal of Engineering 18, Nr. 05 (19.06.2023): 621–38. http://dx.doi.org/10.31026/j.eng.2012.05.07.
Der volle Inhalt der QuelleMahmoud, Thamir K., und Ali H. Nasser. „EXPERIMENTAL AND ANALYTICAL ANALYSIS OF PRE-STRESSED CONCRETE SPLICED GIRDER MODELS“. Journal of Engineering 15, Nr. 04 (01.12.2009): 4087–106. http://dx.doi.org/10.31026/j.eng.2009.04.01.
Der volle Inhalt der QuelleZhao, Hang, und Bassem Andrawes. „Experimental Testing and Strut-and-Tie Modeling of Full-Scale Precast Concrete Girders with FRP Repaired End Regions“. Applied Sciences 10, Nr. 17 (22.08.2020): 5822. http://dx.doi.org/10.3390/app10175822.
Der volle Inhalt der QuelleNguyen, Hue Thi, Hiroshi Masuya, Tuan Minh Ha, Saiji Fukada, Daishin Hanaoka, Kazuhiro Kobayashi und Eiji Koida. „Long-term Application of Carbon Fiber Composite Cable Tendon in the Prestressed Concrete Bridge-Shinmiya Bridge in Japan“. MATEC Web of Conferences 206 (2018): 02011. http://dx.doi.org/10.1051/matecconf/201820602011.
Der volle Inhalt der QuelleUemura, Tomoaki, Norihisa Hashimoto und Masatoshi Harada. „Heavy-weight floor impact sound in the state of coupled vibration of floor slab and girder of a pure framed structure“. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 268, Nr. 7 (30.11.2023): 1497–508. http://dx.doi.org/10.3397/in_2023_0228.
Der volle Inhalt der QuelleDiep, Hung Thanh, Jiho Moon und Byung H. Choi. „Structural Performance of Prefabricated Composite Girders for Railway Bridges along with Girder-to-Deck Interface Connections for Mechanical Injection“. Applied Sciences 13, Nr. 11 (31.05.2023): 6686. http://dx.doi.org/10.3390/app13116686.
Der volle Inhalt der QuelleDissertationen zum Thema "Girders"
Zaoui, Ahlem. „Finite element modeling of post-tensioned box girder bridges“. Thesis, Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/20196.
Der volle Inhalt der QuelleGhose, Dhrubajyoti. „Finite element formulation of a thin-walled beam with improved response to warping restraint“. Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-12052009-020042/.
Der volle Inhalt der QuelleBurrell, Geoffrey Scott. „Distortional buckling in steel I-girders“. Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 143 p, 2007. http://proquest.umi.com/pqdweb?did=1338867451&sid=1&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Der volle Inhalt der QuelleCordahi, Irene A. „Reliability of corroded steel bridge girders“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/34600.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 39-40).
Corrosion is one of the main causes of deterioration of bridges. Structures exposed to harsh environmental conditions are subjected to time-variant changes of their load-carrying capacity. Thus, there is a need for an evaluation to accurately assess the actual condition and predict the remaining life of a structure. System reliability can be used as an efficient tool in evaluation of existing structures. The traditional approach is based on the consideration of individual components rather than the system as a whole. However, it has been observed that the load-carrying capacity of the whole system often is much larger than what is determined by the design of components. Quantification of this difference is the scope of this study.
by Irene A. Cordahi.
M.Eng.
Piotter, Jason Matthew. „Longitudinal Slab Splitting in Composite Girders“. Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/31765.
Der volle Inhalt der QuelleMaster of Science
Kabani, Matongo. „The behaviour of curved hybrid girders“. Master's thesis, University of Cape Town, 2008. http://hdl.handle.net/11427/18997.
Der volle Inhalt der QuelleCurved girders are used in bridges to fit predefined alignment. Hybrid girders are an innovative use of high strength steel enabling optimising moment capacity. Previous studies of curvature and hybrid girder effects have been disjointed, focusing on curved homogeneous girders and straight hybrid girders. There are no generally accepted curved girder equations and this has implications in the study of curved hybrid girders since the hybrid effects become apparent in the inelastic range. Furthermore, the range of radius to span ratio where available analytical procedures can be applied is not known. A total of 48 girders are investigated, 12 of which are straight. The girders are all simply supported, un-braced and loaded at midspan. The load-deflection behaviour of curved hybrid girders is investigated. Stress plots of the girders are obtained at ultimate load. The radius to span ratio is varied from 5 to 50 for 5m span girders and from 5 to 30 for 8m span girders. Three steel grades are used to obtain hybrid girder configurations, with higher yield steel always used in the flanges. The web-flange yield steel combinations used are 350MPa/460MPa, 350MPa/690MPa and 460MPa/ 690MPa. A finite element model using ADINA version 8.4 is used to investigate curved girder behaviour. The collapse analysis option is used to trace behaviour as the load is incremented automatically to a prescribed displacement. Available experimental data is used to check the validity of the modeling assumptions. The presence of curvature radically modifies a girder's load pattern by causing additional lateral bending moments. Lateral bending moments reduce the vertical load carrying capacity of a girder and cause the flanges to be unequally stressed. For the girder and spans investigated, there is a reduction of 57% in ultimate load for radius to span ratio (R/L) of 5 compared to a straight girder of similar proportions and span. The effects of curvature reduce as R/L increases and this is observed in the 5m homogeneous girder with R/L of 50 which attained more than 91% of the straight girder load capacity. The 8m girder with R/1 of 30 attained more than 83% of the equivalent straight load girder capacity. The hybrid girders investigated had load-deflection curves close to corresponding homogeneous girders with flange steel grade, reaching more than 97% of the ultimate load capacity of reference homogeneous girders. The hybrid factors as proposed in the simplified design procedure are adequate and can be applied to analytical equations that predict curved homogeneous girder loads. The available analytical equations give conservative loads for both hybrid and homogeneous girders compared to the finite element method when R/1 is 5 and are unconservative for higher rations.
Lam, Hin Chung. „The analysis of aluminium plate girders“. Thesis, Cardiff University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603501.
Der volle Inhalt der QuelleAngomas, Franklin B. „Behavior of Prestressed Concrete Bridge Girders“. DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/405.
Der volle Inhalt der QuelleEl, Metwally Ahmed Salah. „Prestressed composite girders with corrugated steel webs“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0006/MQ38626.pdf.
Der volle Inhalt der QuelleBurt, C. A. „The ultimate strength of aluminium plate girders“. Thesis, Bucks New University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376618.
Der volle Inhalt der QuelleBücher zum Thema "Girders"
Mohamed Nazri, Fadzli, Mohd Azrulfitri Mohd Yusof und Moustafa Kassem. Precast Segmental Box Girders. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11984-3.
Der volle Inhalt der QuelleLawson, R. M. Design of stub girders. Ascot: Steel Construction Institute, 1993.
Den vollen Inhalt der Quelle findenShahrooz, Bahram M., Richard A. Miller, Kent A. Harries, Qiang Yu und Henry G. Russell. Strand Debonding for Pretensioned Girders. Washington, D.C.: Transportation Research Board, 2017. http://dx.doi.org/10.17226/24813.
Der volle Inhalt der QuelleVance, Mary A. Beams and girders: Recent references. Monticello, Ill., USA: Vance Bibliographies, 1988.
Den vollen Inhalt der Quelle findenAmerican Association of State Highway and Transportation Officials. G13.1 guidelines for steel girder bridge analysis. Washington, D.C: American Association of State Highway and Transportation Officials, 2011.
Den vollen Inhalt der Quelle findenAdamson, Daniel Edward Joseph. Fatigue tests of riveted bridge girders. Edmonton, Canada: University of Alberta, Dept. of Civil Engineering, 1995.
Den vollen Inhalt der Quelle findenW, Hyer M., Bowles David E und Langley Research Center. Applied Materials Branch., Hrsg. The influence of time-dependent material behavior on the response of sandwich beams. Blacksburg, Va: College of Engineering, Virginia Polytechnic Institute and State University, 1991.
Den vollen Inhalt der Quelle findenLi, K. L. Cable-stayed girders with reverse tension systems. Manchester: UMIST, 1997.
Den vollen Inhalt der Quelle findenZaunders, Bo. Gargoyles, girders, & glass houses: Magnificent master builders. New York: Dutton Children's Books, 2004.
Den vollen Inhalt der Quelle findenill, Munro Roxie, Hrsg. Gargoyles, girders, & glass houses: Magnificent master builders. New York: Dutton Children's Books, 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Girders"
Mitchell, Charles F. „Girders“. In Building Construction and Drawing 1906, 427–81. 4. Aufl. London: Routledge, 2022. http://dx.doi.org/10.1201/9781003261674-9.
Der volle Inhalt der QuelleMitchell, Charles F., und George A. Mitchell. „Girders.“ In Building Construction and Drawing 1906, 152–72. London: Routledge, 2022. http://dx.doi.org/10.1201/9781003261476-4.
Der volle Inhalt der QuelleBoothby, Thomas E. „Analysis of Girders: Beams, Plate Girders, and Continuous Girders“. In Engineering Iron and Stone, 103–19. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413838.ch08.
Der volle Inhalt der QuelleDolan, Charles W., und H. R. Hamilton. „Spliced Girders“. In Prestressed Concrete, 343–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97882-6_13.
Der volle Inhalt der QuelleM°Kenzie, W. M. C. „Plate Girders“. In Design of Structural Steelwork to BS 5950 and C-EC3, 198–229. London: Macmillan Education UK, 1998. http://dx.doi.org/10.1007/978-1-349-14612-3_6.
Der volle Inhalt der QuelleBoothby, Thomas E. „Analysis of Girders: Braced Girders and Trusses“. In Engineering Iron and Stone, 79–101. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413838.ch07.
Der volle Inhalt der QuelleMohamed Nazri, Fadzli, Mohd Azrulfitri Mohd Yusof und Moustafa Kassem. „Description of SBG Assembling and Casting-Penang Bridge“. In Precast Segmental Box Girders, 1–13. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11984-3_1.
Der volle Inhalt der QuelleMohamed Nazri, Fadzli, Mohd Azrulfitri Mohd Yusof und Moustafa Kassem. „Overview of Precast Segmental Box Girder“. In Precast Segmental Box Girders, 15–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11984-3_2.
Der volle Inhalt der QuelleMohamed Nazri, Fadzli, Mohd Azrulfitri Mohd Yusof und Moustafa Kassem. „Finite Element Analysis of SBG Subjected to Static Loads“. In Precast Segmental Box Girders, 31–47. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11984-3_3.
Der volle Inhalt der QuelleMohamed Nazri, Fadzli Mohamed, Mohd Azrulfitri Mohd Yusof und Moustafa Kassem. „Validation of Experimental and Analytical Study Work“. In Precast Segmental Box Girders, 49–74. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11984-3_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Girders"
Castrodale, Reid. „Comparative Bridge Designs Using Normalweight and Lightweight Concrete“. In PCI/National Bridge Conference. Precast/Prestressed Concrete Institute, 2009. http://dx.doi.org/10.15554/pro.2009pci/nbc-pr-45.
Der volle Inhalt der QuelleMao, Qianyi, Dong Xu und Yongxue Jin. „Design Method and Finite Element Analysis of Precast Longitudinal Split-Piece Cover Beam“. In IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/nanjing.2022.1088.
Der volle Inhalt der QuelleTang, Shenghua, und Zhi Fang. „Damage Assessment of Prestressed Concrete Girders Using Crack Fractal and Frequency“. In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.1527.
Der volle Inhalt der QuelleDong, Gang, und Torgeir Moan. „Shear Strength of Plate Girders in Ship Structures“. In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79962.
Der volle Inhalt der QuelleDuan, Lan, Yangfan Xin, Zhaxi Dawa und Chunsheng Wang. „Numerical Simulation of Longitudinal Shear Behavior of High Strength Steel and Concrete Composite Girders“. In IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/nanjing.2022.0505.
Der volle Inhalt der QuelleMasungi, Parfait M., Maria E. M. Garlock und Spencer E. Quiel. „Effect of Initial Web Out-of-Flatness Imperfections on the Shear Strength of Low-Frequency Sinusoidal Plate Girders“. In IABSE Symposium, Manchester 2024: Construction’s Role for a World in Emergency. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2024. http://dx.doi.org/10.2749/manchester.2024.0208.
Der volle Inhalt der QuelleZhang, Yin, Haiying Ma, Huan Zhang und Ye Xia. „Performance analysis on Twin-I girder bridges using hollow tubular top flanges“. In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.0512.
Der volle Inhalt der QuelleVergoossen, Rob, Gert-Jan van Eck und Danny Jilissen. „Re-using existing prefabricated prestressed concrete girders in new bridges“. In IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.0554.
Der volle Inhalt der QuelleWang, Peter Y., Maria E. Garlock, Theodore P. Zoli und Spencer E. Quiel. „Low-Frequency Sine Webs for Improved Shear Buckling Performance of Plate Girders“. In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.0691.
Der volle Inhalt der QuelleVlasic, Andjelko, Mladen Srbić und Gordana Hrelja Kovačević. „Comparative analysis and applicability of optimal composite sections for small to middle span girder bridges“. In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.1269.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Girders"
Kanakamedala, Deven, Jungil Seo, Amit H. Varma, Robert J. Connor und Anna Tarasova. Shear and Bearing Capacity of Corroded Steel Beam Bridges and the Effects on Load Rating. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317634.
Der volle Inhalt der QuelleTseng, Tzu-Chun, und Amit H. Varma. Synthesis Study: Repair and Durability of Fire-Damaged Prestressed Concrete Bridge Girders. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317378.
Der volle Inhalt der QuelleGroeneveld, Andrew B., Stephanie G. Wood und Edgardo Ruiz. Estimating Bridge Reliability by Using Bayesian Networks. Engineer Research and Development Center (U.S.), Februar 2021. http://dx.doi.org/10.21079/11681/39601.
Der volle Inhalt der QuelleGalik, William, John Stanton und Richard Wiebe. Lateral-Torsional-Roll Stability of Long Precast Girders. Precast/Prestressed Concrete institute, 2022. http://dx.doi.org/10.15554/pci.rr.comp-035.
Der volle Inhalt der QuelleJáger, Bence, Balázs Kövesdi und László Dunai. DESIGN METHOD IMPROVEMENTS FOR TRAPEZOIDALLY CORRUGATED WEB GIRDERS. The Hong Kong Institute of Steel Construction, Dezember 2018. http://dx.doi.org/10.18057/icass2018.p.143.
Der volle Inhalt der QuelleHassan, Ahmed, und Mark Bowman. Fatigue Strength of Girders with Tapered Covered Plates. West Lafayette, IN: Purdue University, 1995. http://dx.doi.org/10.5703/1288284313225.
Der volle Inhalt der QuelleRamirez, J., und Gerardo Aguilar. Shear Reinforcement Requirements for High-Strength Concrete Bridge Girders. West Lafayette, IN: Purdue University, 2005. http://dx.doi.org/10.5703/1288284313393.
Der volle Inhalt der QuelleVarma, Amit H., Jan Olek, Christopher S. Williams, Tzu-Chun Tseng, Dan Huang und Tom Bradt. Post-Fire Assessment of Prestressed Concrete Bridges in Indiana. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317290.
Der volle Inhalt der QuelleHui, Jonathan F., Jason B. Lloyd und Robert J. Connor. Fatigue Life Improvement of Welded Girders with Ultrasonic Impact Treatment. Purdue University, Mai 2018. http://dx.doi.org/10.5703/1288284316654.
Der volle Inhalt der QuelleRamirez, J., J. Olek und Eric Rolle. Performance of Bridge Decks and Girders with Lightweight Aggregate Concrete. West Lafayette, IN: Purdue University, 2000. http://dx.doi.org/10.5703/1288284313288.
Der volle Inhalt der Quelle