Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Giant Magnetoresistance and Hall effect“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Giant Magnetoresistance and Hall effect" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Giant Magnetoresistance and Hall effect"
Huang, Hui, Juanjuan Gu, Ping Ji, Qinglong Wang, Xueyou Hu, Yongliang Qin, Jingrong Wang und Changjin Zhang. „Giant anisotropic magnetoresistance and planar Hall effect in Sr0.06Bi2Se3“. Applied Physics Letters 113, Nr. 22 (26.11.2018): 222601. http://dx.doi.org/10.1063/1.5063689.
Der volle Inhalt der QuelleBudantsev, M. V., A. G. Pogosov, A. E. Plotnikov, A. K. Bakarov, A. I. Toropov und J. C. Portal. „Giant hysteresis of magnetoresistance in the quantum hall effect regime“. JETP Letters 86, Nr. 4 (Oktober 2007): 264–67. http://dx.doi.org/10.1134/s0021364007160102.
Der volle Inhalt der QuelleNúñez-Regueiro, J. E., D. Gupta und A. M. Kadin. „Hall effect and giant magnetoresistance in lanthanum manganite thin films“. Journal of Applied Physics 79, Nr. 8 (1996): 5179. http://dx.doi.org/10.1063/1.361331.
Der volle Inhalt der QuelleWang, Silin, und Junji Gao. „Overview of Magnetic Field Sensor“. Journal of Physics: Conference Series 2613, Nr. 1 (01.10.2023): 012012. http://dx.doi.org/10.1088/1742-6596/2613/1/012012.
Der volle Inhalt der QuelleBobin, S. B., und A. T. Lonchakov. „Giant Planar Hall Effect in an Ultra-Pure Mercury Selenide Single Crystal Sample“. JETP Letters 118, Nr. 7 (Oktober 2023): 495–501. http://dx.doi.org/10.1134/s0021364023602658.
Der volle Inhalt der QuelleSamoilov, A. V., G. Beach, C. C. Fu, N. C. Yeh und R. P. Vasquez. „Giant spontaneous Hall effect and magnetoresistance in La1−xCaxCoO3 (0.1⩽x⩽0.5)“. Journal of Applied Physics 83, Nr. 11 (Juni 1998): 6998–7000. http://dx.doi.org/10.1063/1.367623.
Der volle Inhalt der QuelleXiong, Peng, Gang Xiao, J. Q. Wang, John Q. Xiao, J. Samuel Jiang und C. L. Chien. „Extraordinary Hall effect and giant magnetoresistance in the granular Co-Ag system“. Physical Review Letters 69, Nr. 22 (30.11.1992): 3220–23. http://dx.doi.org/10.1103/physrevlett.69.3220.
Der volle Inhalt der QuelleZhang, H., X. Y. Zhu, Y. Xu, D. J. Gawryluk, W. Xie, S. L. Ju, M. Shi et al. „Giant magnetoresistance and topological Hall effect in the EuGa4 antiferromagnet“. Journal of Physics: Condensed Matter 34, Nr. 3 (03.11.2021): 034005. http://dx.doi.org/10.1088/1361-648x/ac3102.
Der volle Inhalt der QuelleZhu, L., X. X. Qu, H. Y. Cheng und K. L. Yao. „Spin-polarized transport properties of the FeCl2/WSe2/FeCl2 van der Waals heterostructure“. Applied Physics Letters 120, Nr. 20 (16.05.2022): 203505. http://dx.doi.org/10.1063/5.0091580.
Der volle Inhalt der QuelleBlachowicz, Tomasz, Ilda Kola, Andrea Ehrmann, Karoline Guenther und Guido Ehrmann. „Magnetic Micro and Nano Sensors for Continuous Health Monitoring“. Micro 4, Nr. 2 (06.04.2024): 206–28. http://dx.doi.org/10.3390/micro4020015.
Der volle Inhalt der QuelleDissertationen zum Thema "Giant Magnetoresistance and Hall effect"
Östling, Johan. „High Accuracy Speed and Angular Position Detection by Dual Sensor“. Thesis, Uppsala universitet, Fasta tillståndets fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-365726.
Der volle Inhalt der QuelleKowalczyk, Hugo. „Transitions de phases et propriétés électroniques de couches 2D de WTe2 et MoTe2“. Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS571.
Der volle Inhalt der QuelleThis work presents the study of phase transitions and electronic properties of two transition metal dichalcogenides: WTe2 and MoTe2. The relevance of those materials lies in its two metastable phases at ambient pressure and temperature, 1T’ and Td, classifying them as Weyl semi-metals. We had the chance to synthesize 2H-MoTe2, 1T’-MoTe2 and Td-WTe2 monocrystals by chemical vapour transport during an exchange at IISER Pune in India. High quality resulting crystals were characterized by XRD, SEM-EDX and Raman spectroscopy. Then we could exfoliate it by the anodic bonding method proper to our laboratory, characterize their 2D form and build electronic measurement devices by gold contact deposition. In the context of multiple transition metal dichalcogenides stable and metastable phases, the study of the transitions between those phases is very interesting. We first present 1T’ to Td temperature induced phase transition in MoTe2 and observe the impact of layer thickness on transition temperature and establish a phase diagram. Then, we prove the absence of 2H to 1T’ transition and its reversibility in a MoTe2 monolayer purely induced by electrostatic doping, claimed by recent works. This transition, from semi-conductive to semi-metallic phase is likely predicted for applications in nanotechnologies as an electronic switch. Through space charge doping and Raman spectroscopy experiment, we highlight the role of Tellurium migration and the creation of vacancies in this transition. We also measured Td-WTe2 transport properties (magnetoresistance and Hall effect) of various layer thicknesses. Through a two band model parameters adjustment, we could determine carriers densities and mobilities and relate them to compensated semi-metal theory responsible of Giant Magnetoresistance response of this material. Those experiments could highlight the more insulating behaviour of thinner layers and the presence of weak anti-localization at low temperature, whereas the thinner layers are more conductive and exhibits Shubnikov-de Haas quantum oscillations at high magnetic field
Wipatawit, Praphaphan. „Studies of magnetoresistance and Hall sensors in semiconductors“. Thesis, University of Oxford, 2006. http://ora.ox.ac.uk/objects/uuid:58faf6f4-debb-4695-8909-fca7cbf310a2.
Der volle Inhalt der QuelleFujimoto, Tatsuo. „Magnetic and magnetoresistive properties of anisotropy-controlled spin-valve structures“. Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387613.
Der volle Inhalt der QuelleShang, T., H. L. Yang, Q. F. Zhan, Z. H. Zuo, Y. L. Xie, L. P. Liu, S. L. Zhang et al. „Effect of IrMn inserted layer on anomalous-Hall resistance and spin-Hall magnetoresistance in Pt/IrMn/YIG heterostructures“. AMER INST PHYSICS, 2016. http://hdl.handle.net/10150/622466.
Der volle Inhalt der QuelleShang, T., Q. F. Zhan, H. L. Yang, Z. H. Zuo, Y. L. Xie, L. P. Liu, S. L. Zhang et al. „Effect of NiO inserted layer on spin-Hall magnetoresistance in Pt/NiO/YIG heterostructures“. AMER INST PHYSICS, 2016. http://hdl.handle.net/10150/621346.
Der volle Inhalt der QuellePathak, Arjun Kumar. „EXPLORATION OF NEW MULTIFUNCTIONAL MAGNETIC MATERIALS BASED ON A VARIETY OF HEUSLER ALLOYS AND RARE-EARTH COMPOUNDS“. OpenSIUC, 2011. https://opensiuc.lib.siu.edu/dissertations/353.
Der volle Inhalt der QuelleKalappattil, Vijaysankar. „Spin Seebeck effect and related phenomena in functional magnetic oxides“. Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7632.
Der volle Inhalt der QuelleKato, Takashi, Yasuhito Ishikawa, Hiroyoshi Itoh und Jun-ichiro Inoue. „Intrinsic anisotropic magnetoresistance in spin-polarized two-dimensional electron gas with Rashba spin-orbit interaction“. American Physical Society, 2008. http://hdl.handle.net/2237/11252.
Der volle Inhalt der QuellePersson, Anders. „Magnetoresistance and Space : Micro- and Nanofeature Sensors Designed, Manufactured and Evaluated for Space Magnetic Field Investigations“. Doctoral thesis, Uppsala universitet, Ångström Space Technology Centre (ÅSTC), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-151832.
Der volle Inhalt der QuelleBücher zum Thema "Giant Magnetoresistance and Hall effect"
Kübler, Jürgen. Theory of Itinerant Electron Magnetism, 2nd Edition. 2. Aufl. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895639.001.0001.
Der volle Inhalt der QuelleValenzuela, S. O., und T. Kimura. Experimental observation of the spin Hall effect using electronic nonlocal detection. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0014.
Der volle Inhalt der QuelleMaekawa, Sadamichi, Sergio O. Valenzuela, Eiji Saitoh und Takashi Kimura, Hrsg. Spin Current. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.001.0001.
Der volle Inhalt der QuelleKimura, T. Introduction of spin torques. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0019.
Der volle Inhalt der QuelleCao, Gang, und Lance DeLong. Physics of Spin-Orbit-Coupled Oxides. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780199602025.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Giant Magnetoresistance and Hall effect"
Chambers, R. G. „Magnetoresistance“. In Quantum Hall Effect: A Perspective, 89–113. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-010-9709-3_7.
Der volle Inhalt der QuelleSwagten, H. J. M., M. M. H. Willekens und W. J. M. Jonge. „The Giant Magnetoresistance Effect“. In Frontiers in Magnetism of Reduced Dimension Systems, 471–99. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5004-0_25.
Der volle Inhalt der QuelleChambers, R. G. „Magnetoresistance and Hall Effect“. In Electronics in Metals and Semiconductors, 146–60. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0423-1_11.
Der volle Inhalt der QuelleBalogh, J., A. Gábor, D. Kaptás, L. F. Kiss, M. Csontos, A. Halbritter, I. Kézsmárki und G. Mihály. „Giant Magnetoresistance of a Single Interface“. In Kondo Effect and Dephasing in Low-Dimensional Metallic Systems, 181–84. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0427-5_19.
Der volle Inhalt der QuelleMatsukura, F. „Ga1–xMnxAs: conductivity, resistivity, magnetoresistance, Hall effect“. In New Data and Updates for III-V, II-VI and I-VII Compounds, 189–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92140-0_142.
Der volle Inhalt der QuelleDietl, Tomasz, Fumihiro Matsukura, Hideo Ohno, Joël Cibert und David Ferrand. „Hall Effect and Magnetoresistance in P-Type Ferromagnetic Semiconductors“. In Recent Trends in Theory of Physical Phenomena in High Magnetic Fields, 197–210. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0221-9_16.
Der volle Inhalt der QuelleMurata, K., M. Ishibashi, Y. Honda, T. Komazaki, M. Tokumoto, N. Kinoshita und H. Anzai. „Electronic Properties in (BEDT-TTF)2X: Magnetoresistance and Hall Effect“. In Springer Proceedings in Physics, 224–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75424-1_49.
Der volle Inhalt der QuelleOng, N. P., T. W. Jing, T. R. Chien, D. A. Brawner, Z. Z. Wang und J. M. Tarascon. „The Hall Effect and Magnetoresistance of the High-Temperature Cuprate Superconductors“. In Springer Proceedings in Physics, 247–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77154-5_49.
Der volle Inhalt der QuelleBratkovsky, A. M. „Giant Negative Magnetoresistance and Strong Electron-Lattice Coupling in Amorphous Semiconductors with Magnetic Impurities“. In Vibronic Interactions: Jahn-Teller Effect in Crystals and Molecules, 133–40. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0985-0_14.
Der volle Inhalt der QuelleLoboda, V. B., M. Ya Dovzhyk, V. O. Kravchenko, S. M. Khursenko und Yu O. Shkurdoda. „On the Possibility of Training Demonstration of the Giant Magnetoresistance Effect in Higher School“. In Lecture Notes in Mechanical Engineering, 81–88. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6133-3_8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Giant Magnetoresistance and Hall effect"
Yoo, JinHyeong, James B. Restorff und Marilyn Wun-Fogle. „Non-Contact Tension Sensing Using Fe-Ga Alloy Strip“. In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8909.
Der volle Inhalt der QuelleWen, Zhenchao, Takahide Kubota, Tatsuya Y. Arnamoto und Koki Takanashi. „Enhanced Current-Perpendicular-to-Plane Giant Magnetoresistance Effect in Half-Metallic NiMnSb Heusler Alloy Based Nano-Junctions with Multiple Ag Spacers“. In 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS). IEEE, 2016. http://dx.doi.org/10.1109/icaums.2016.8479999.
Der volle Inhalt der QuelleRuotolo, A., und D. Li. „Giant Photo-Hall Effect in Metals.“ In 2018 IEEE International Magnetic Conference (INTERMAG). IEEE, 2018. http://dx.doi.org/10.1109/intmag.2018.8508574.
Der volle Inhalt der QuelleShkurdoda, Yu O., A. M. Chornous, A. P. Kharchenko, A. G. Basov und L. V. Dekhtyaruk. „Effect of giant magnetoresistance in a symmetric magnetically sandwich“. In 2016 International Conference on Nanomaterials: Application & Properties (NAP). IEEE, 2016. http://dx.doi.org/10.1109/nap.2016.7757282.
Der volle Inhalt der QuelleThiyagarajah, N., Y. Lau, D. Betto, K. Borisov, J. Coey, P. S. Stamenov und K. Rode. „Giant spontaneous hall effect in zero-moment Mn2RuxGa“. In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157431.
Der volle Inhalt der QuelleMerzlikin, A. M., A. P. Vinogradov, M. Inoue und A. B. Granovsky. „Giant photonic Hall effect in magneto-photonic crystals“. In Proceedings of the Symposium R. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701718_0017.
Der volle Inhalt der QuelleZhang, Rong Jun, Liang-Yao Chen, Shi-Ming Zhou, Yu Wang, Bo Xu, Dong-Liang Qian, Wei-Ming Zheng und Yu-Xiang Zheng. „Giant magnetoresistance effect in granular-type Co-Ag/Ag multilayers“. In Third International Conference on Thin Film Physics and Applications, herausgegeben von Shixun Zhou, Yongling Wang, Yi-Xin Chen und Shuzheng Mao. SPIE, 1998. http://dx.doi.org/10.1117/12.300729.
Der volle Inhalt der QuelleMurzina, T. V., T. V. Misuryaev, A. E. Kravets, A. A. Nikulin und O. A. Aktsipetrov. „Magnetic dots: giant magnetoresistance and nonlinear magneto-optical Kerr effect“. In CLEO 2001. Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest. IEEE, 2001. http://dx.doi.org/10.1109/cleo.2001.947573.
Der volle Inhalt der QuellePhetchakul, T., P. Taisettavatkul, W. Pengchan, W. Yamwong und A. Poyai. „The new design for magnetoresistance effect on Hall plate structure“. In 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2012). IEEE, 2012. http://dx.doi.org/10.1109/ecticon.2012.6254189.
Der volle Inhalt der QuelleSakuraba, Takahito, Masamichi Sakai, Tastuya Arai, Yusuke Tanaka, Hiroaki Hirama, Zentaro Honda, Akira Kitajima, Koji Higuchi, Akihiro Oshima und Shigehiko Hasegawa. „Hall Effect and Magnetoresistance in GdxY1−xH2(x\( \fallingdotseq \) 0.4)“. In Proceedings of the 12th Asia Pacific Physics Conference (APPC12). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.1.012009.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Giant Magnetoresistance and Hall effect"
Gonis, Antonios, und Bruce Guerney. Numerical Modeling of Giant Magnetoresistance Effect for Application to Magnetic Data Storage Final Report CRADA No. TC-0504-93. Office of Scientific and Technical Information (OSTI), März 2018. http://dx.doi.org/10.2172/1431005.
Der volle Inhalt der QuelleGonis, A. Numerical Modeling of Giant Magnetoresistance Effect for Application to Magnetic Data Storage Final Report CRADA No. TC-0504-93. Office of Scientific and Technical Information (OSTI), Oktober 1996. http://dx.doi.org/10.2172/756989.
Der volle Inhalt der QuelleButler, W. H., und B. A. Gurney. Numerical modeling of giant magnetoresistance effect for application to magnetic data storage. CRADA final report for CRADA number Y-1293-0175. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/461241.
Der volle Inhalt der QuelleButler, W. H., und B. A. Gurney. Numerical modeling of giant magnetoresistance effect for application to magnetic data storage. Project accomplishment summary report for 93-MULT-116-D1-04. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/446402.
Der volle Inhalt der Quelle