Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Germanium poreux.

Zeitschriftenartikel zum Thema „Germanium poreux“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Germanium poreux" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Chubenko, E. B., N. L. Grevtsov, V. P. Bondarenko, I. M. Gavrilin, A. V. Pavlikov, A. A. Dronov, L. S. Volkova und S. A. Gavrilov. „RAMAN SPECTRА OF SILICON/GERMANIUM ALLOY THIN FILMS BASED ON POROUS SILICON“. Journal of Applied Spectroscopy 89, Nr. 5 (21.09.2022): 614–20. http://dx.doi.org/10.47612/0514-7506-2022-89-5-614-620.

Der volle Inhalt der Quelle
Annotation:
The regularities of composition changes of silicon/germanium alloy thin films formed on a monocrystalline silicon substrate by electrochemical deposition of germanium into a porous silicon matrix with subsequent rapid thermal annealing (RTA) at a temperature of 750–950°C are studied. An analysis of the samples by Raman spectroscopy showed that an increase of RTA temperature leads to a decrease in the germanium concentration in the formed film. A decrease of the RTA duration at a given temperature makes it possible to obtain films with a higher concentration of germanium and to control the composition of thin silicon/germanium alloy films formed by changing the temperature and duration of RTA. The obtained results on controlling the composition of silicon/germanium alloy films can be used to create functional electronic devices, thermoelectric power converters, and optoelectronic devices.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Garralaga Rojas, Enrique, Jan Hensen, Jürgen Carstensen, Helmut Föll und Rolf Brendel. „Porous germanium multilayers“. physica status solidi (c) 8, Nr. 6 (07.04.2011): 1731–33. http://dx.doi.org/10.1002/pssc.201000130.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Grevtsov, Nikita, Eugene Chubenko, Vitaly Bondarenko, Ilya Gavrilin, Alexey Dronov und Sergey Gavrilov. „Germanium electrodeposition into porous silicon for silicon-germanium alloying“. Materialia 26 (Dezember 2022): 101558. http://dx.doi.org/10.1016/j.mtla.2022.101558.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Amato, G., A. M. Rossi, L. Boarino und N. Brunetto. „On the role of germanium in porous silicon-germanium luminescence“. Philosophical Magazine B 76, Nr. 3 (September 1997): 395–403. http://dx.doi.org/10.1080/01418639708241102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Li, Xiu, Wei Guo, Qian Wan und Jianmin Ma. „Porous amorphous Ge/C composites with excellent electrochemical properties“. RSC Advances 5, Nr. 36 (2015): 28111–14. http://dx.doi.org/10.1039/c5ra02459e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Xu, Jing, Thanh-Dinh Nguyen, Kai Xie, Wadood Y. Hamad und Mark J. MacLachlan. „Chiral nematic porous germania and germanium/carbon films“. Nanoscale 7, Nr. 31 (2015): 13215–23. http://dx.doi.org/10.1039/c5nr02520f.

Der volle Inhalt der Quelle
Annotation:
Co-assembly of cellulose nanocrystals (CNCs) with germanium(iv) alkoxide in a mixed solvent system produces chiral nematic photonic GeO2/CNC composites, which were converted to semiconducting, mesoporous GeO2/C and Ge/C replicas.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yin, Huayi, Wei Xiao, Xuhui Mao, Hua Zhu und Dihua Wang. „Preparation of a porous nanostructured germanium from GeO2via a “reduction–alloying–dealloying” approach“. Journal of Materials Chemistry A 3, Nr. 4 (2015): 1427–30. http://dx.doi.org/10.1039/c4ta05244g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rojas, E. Garralaga, J. Hensen, J. Carstensen, H. Föll und R. Brendel. „Lift-off of Porous Germanium Layers“. Journal of The Electrochemical Society 158, Nr. 6 (2011): D408. http://dx.doi.org/10.1149/1.3583645.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Isaiev, M., S. Tutashkonko, V. Jean, K. Termentzidis, T. Nychyporuk, D. Andrusenko, O. Marty, R. M. Burbelo, D. Lacroix und V. Lysenko. „Thermal conductivity of meso-porous germanium“. Applied Physics Letters 105, Nr. 3 (21.07.2014): 031912. http://dx.doi.org/10.1063/1.4891196.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Platonov, Nikolay, Nail Suleimanov und Valery Bazarov. „Study of the electrophysical properties of nanostructured porous germanium as a promising material for electrodes of electrochemical capacitors“. E3S Web of Conferences 288 (2021): 01073. http://dx.doi.org/10.1051/e3sconf/202128801073.

Der volle Inhalt der Quelle
Annotation:
Electrochemical capacitors (ECC) are a fast charging devices, with high power density, capacity and increased life time. Nanostructured semiconductors are now considered as the promising materials for electrodes of such devices due to its conductive properties and effective surface. One of such materials is the porous germanium which can be used as an electrode in electrochemical capacitors. In this article the novel approach based on the method of ion implantation was developed to grow these structures. This method allows to obtain a structures up to 1 μm thick. The object of this work was the investigation of the electrophysical characteristics of samples of nanostructured porous germanium (Ge) depending on the implantation dose and surface morphology. The scientific novelty of this research lies in the search the structures with the highest effective surface area and electronic conductivity, capable of multiplying the energy capacity and specific power of ECC. Methods: The samples of amorphous Ge were grown on dielectric single-crystal substrates of Al2O3. The thickness of samples was 600 and 1000 nm. The magnetron sputtering and ion implantation methods were used to growth these structures. The irradiation with Ge+ ions produced with an energy of 40 keV and the range of implantation doses varied from 2·1016 to 12•1016 ion / cm2. The study of electrical properties was carried out on the Hall installation HL55PC at the NPP KVANT in Moscow. The following parameters were measured: the sheet concentration of carriers in the near-surface layer, electrical resistance, mobility of the charge carriers, Hall coefficient. As a result, the dependences of carriers concentration and their mobility as the function of the implantation dose and thickness of the samples of nanostructured porous germanium were determined, and the results were analyzed. Results: It was found that ion implantation of single-crystal germanium leads to an increase in the carrier concentration in the near-surface layer. To sum up, the most suitable material as an electrode for ECC is the porous germanium with the maximum dose of ion implantation and the largest thickness. The maximum sheet carrier concentration that was obtained in the study for Ge is 1017 cm-2.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Jing, Chengbin, Chuanjian Zhang, Xiaodan Zang, Wenzheng Zhou, Wei Bai, Tie Lin und Junhao Chu. „Fabrication and characteristics of porous germanium films“. Science and Technology of Advanced Materials 10, Nr. 6 (Dezember 2009): 065001. http://dx.doi.org/10.1088/1468-6996/10/6/065001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Steinbach, T., und W. Wesch. „Porous structure formation in ion irradiated germanium“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 319 (Januar 2014): 112–16. http://dx.doi.org/10.1016/j.nimb.2013.11.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Fässler, Thomas F. „Germanium(cF136): A New Crystalline Modification of Germanium with the Porous Clathrate-II Structure“. Angewandte Chemie International Edition 46, Nr. 15 (02.04.2007): 2572–75. http://dx.doi.org/10.1002/anie.200604586.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Yang, Chenglong, Yu Jiang, Xiaowu Liu, Xiongwu Zhong und Yan Yu. „Germanium encapsulated in sulfur and nitrogen co-doped 3D porous carbon as an ultra-long-cycle life anode for lithium ion batteries“. Journal of Materials Chemistry A 4, Nr. 48 (2016): 18711–16. http://dx.doi.org/10.1039/c6ta08681k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Ngo, Duc Tung, Hang T. T. Le, Ramchandra S. Kalubarme, Jae-Young Lee, Choong-Nyeon Park und Chan-Jin Park. „Uniform GeO2 dispersed in nitrogen-doped porous carbon core–shell architecture: an anode material for lithium ion batteries“. Journal of Materials Chemistry A 3, Nr. 43 (2015): 21722–32. http://dx.doi.org/10.1039/c5ta05145b.

Der volle Inhalt der Quelle
Annotation:
Germanium oxide (GeO2), which possesses great potential as a high-capacity anode material for lithium ion batteries, has suffered from its poor capacity retention and rate capability due to significant volume changes during lithiation and delithiation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Choi, Hee Cheul, und Jillian M. Buriak. „Preparation and functionalization of hydride terminated porous germanium“. Chemical Communications, Nr. 17 (2000): 1669–70. http://dx.doi.org/10.1039/b004011h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Akkari, Emna, Oualid Touayar und Brahim Bessais. „Reflectivity, Absorption and Structural Studies of Porous Germanium“. Sensor Letters 9, Nr. 6 (01.12.2011): 2295–98. http://dx.doi.org/10.1166/sl.2011.1752.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Guzmán, David, Miguel Cruz und Chumin Wang. „Electronic and optical properties of ordered porous germanium“. Microelectronics Journal 39, Nr. 3-4 (März 2008): 523–25. http://dx.doi.org/10.1016/j.mejo.2007.07.083.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Miyazaki, S., K. Sakamoto, K. Shiba und M. Hirose. „Photoluminescence from anodized and thermally oxidized porous germanium“. Thin Solid Films 255, Nr. 1-2 (Januar 1995): 99–102. http://dx.doi.org/10.1016/0040-6090(94)05630-v.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Shieh, J., H. L. Chen, T. S. Ko, H. C. Cheng und T. C. Chu. „Nanoparticle-Assisted Growth of Porous Germanium Thin Films“. Advanced Materials 16, Nr. 13 (05.07.2004): 1121–24. http://dx.doi.org/10.1002/adma.200306541.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Karavanskii, V. A., A. A. Lomov, A. G. Sutyrin, V. A. Bushuev, N. N. Loikho, N. N. Melnik, T. N. Zavaritskaya und S. Bayliss. „Observation of nanocrystals in porous stain-etched germanium“. physica status solidi (a) 197, Nr. 1 (Mai 2003): 144–49. http://dx.doi.org/10.1002/pssa.200306490.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Stepanov, A. L., V. V. Vorob’ev, V. I. Nuzhdin, V. F. Valeev und Yu N. Osin. „Formation of Porous Germanium Layers by Silver-Ion Implantation“. Technical Physics Letters 44, Nr. 4 (April 2018): 354–57. http://dx.doi.org/10.1134/s1063785018040260.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Rogov, R. M., V. I. Nuzhdin, V. F. Valeev, A. I. Gumarov, L. R. Tagirov, I. M. Klimovich und A. L. Stepanov. „Porous germanium with copper nanoparticles formed by ion implantation“. Vacuum 166 (August 2019): 84–87. http://dx.doi.org/10.1016/j.vacuum.2019.04.062.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Rogov, A. M., A. I. Gumarov, L. R. Tagirov und A. L. Stepanov. „Swelling and sputtering of porous germanium by silver ions“. Composites Communications 16 (Dezember 2019): 57–60. http://dx.doi.org/10.1016/j.coco.2019.08.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Rogov, A. M., Y. N. Osin, V. I. Nuzhdin, V. F. Valeev und A. L. Stepanov. „Porous germanium with Ag nanoparticles formed by ion implantation“. Journal of Physics: Conference Series 1092 (September 2018): 012125. http://dx.doi.org/10.1088/1742-6596/1092/1/012125.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Akkari, E., Z. Benachour, S. Aouida, O. Touayar, B. Bessais und J. Benbrahim. „Study and characterization of porous germanium for radiometric measurements“. physica status solidi (c) 6, Nr. 7 (Juli 2009): 1685–88. http://dx.doi.org/10.1002/pssc.200881099.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Gorokhov, E. B., K. N. Astankova, I. A. Azarov, V. A. Volodin und A. V. Latyshev. „New method of porous Ge layer fabrication: structure and optical properties“. Физика и техника полупроводников 52, Nr. 5 (2018): 517. http://dx.doi.org/10.21883/ftp.2018.05.45861.50.

Der volle Inhalt der Quelle
Annotation:
AbstractPorous germanium films were produced by selective removal of the GeO_2 matrix from the GeO_2<Ge–NCs> heterolayer in deionized water or HF. On the basis of Raman and infrared spectroscopy data it was supposed that a stable skeletal framework from agglomerated Ge nanoparticles (amorphous or crystalline) was formed after the selective etching of GeO_2<Ge–NCs> heterolayers. The kinetics of air oxidation of amorphous porous Ge layers was investigated by scanning ellipsometry. Spectral ellipsometry allowed estimating the porosity of amorphous and crystalline porous Ge layers, which was ~70 and ~80%, respectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Stepanov, A. L., Yu N. Osin, V. I. Nuzhdin, V. F. Valeev und V. V. Vorob’ev. „Synthesis of Porous Germanium with Silver Nanoparticles by Ion Implantation“. Nanotechnologies in Russia 12, Nr. 9-10 (September 2017): 508–13. http://dx.doi.org/10.1134/s1995078017050123.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Ko, T. S., J. Shieh, M. C. Yang, T. C. Lu, H. C. Kuo und S. C. Wang. „Phase transformation and optical characteristics of porous germanium thin film“. Thin Solid Films 516, Nr. 10 (März 2008): 2934–38. http://dx.doi.org/10.1016/j.tsf.2007.06.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Abdullahi, Yusuf Zuntu, und Fatih Ersan. „Theoretical design of porous dodecagonal germanium carbide (d-GeC) monolayer“. RSC Advances 13, Nr. 5 (2023): 3290–94. http://dx.doi.org/10.1039/d2ra07841d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Zegadi, Rami, Nathalie Lorrain, Sofiane Meziani, Yannick Dumeige, Loїc Bodiou, Mohammed Guendouz, Abdelouahab Zegadi und Joël Charrier. „Theoretical Demonstration of the Interest of Using Porous Germanium to Fabricate Multilayer Vertical Optical Structures for the Detection of SF6 Gas in the Mid-Infrared“. Sensors 22, Nr. 3 (22.01.2022): 844. http://dx.doi.org/10.3390/s22030844.

Der volle Inhalt der Quelle
Annotation:
Porous germanium is a promising material for sensing applications in the mid-infrared wavelength range due to its biocompatibility, large internal surface area, open pores network and widely tunable refractive index, as well as its large spectral transparency window ranging from 2 to 15 μm. Multilayers, such as Bragg reflectors and microcavities, based on porous germanium material, are designed and their optical spectra are simulated to enable SF6 gas-sensing applications at a wavelength of 10.55 µm, which corresponds to its major absorption line. The impact of both the number of successive layers and their respective porosity on the multilayer structures reflectance spectrum is investigated while favoring low layer thicknesses and thus the ease of multilayers manufacturing. The suitability of these microcavities for mid-infrared SF6 gas sensing is then numerically assessed. Using an asymmetrical microcavity porous structure, a sensitivity of 0.01%/ppm and a limit of detection (LOD) around 1 ppb for the SF6 gas detection are calculated. Thanks to both the porous nature allowing gases to easily infiltrate the overall structure and Ge mid-infrared optical properties, a theoretical detection limit nearly 1000 times lower than the current state of the art is simulated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Al-Diabat, Ahmad M., Natheer A. Algadri, Tariq Alzoubi, Naser M. Ahmed, Abdulsalam Abuelsamen, Osama Abu Noqta, Ghaseb N. Makhadmeh, Amal Mohamed Ahmed Ali und Almutery Aml. „Combining Germanium Quantum Dots with Porous Silicon: An Innovative Method for X-ray Detection“. WSEAS TRANSACTIONS ON ELECTRONICS 15 (10.12.2024): 128–34. https://doi.org/10.37394/232017.2024.15.15.

Der volle Inhalt der Quelle
Annotation:
This study investigates the controlled electrochemical synthesis of porous silicon and germanium (Ge)-doped porous silicon using a 4:1 ratio of hydrofluoric acid (HF) to ethanol. Structural analysis performed with FESEM-EDX confirmed the presence of Ge in the samples. Analysis of the I-V characteristics demonstrated that increasing the bias voltage at the source led to a corresponding increase in the observed current. Additionally, effective X-ray measurements facilitated the assessment of X-ray irradiation effects on the sample detector. The experimental results indicated that the optimal conditions for the porous silicon (PS) and Ge-doped porous silicon (Ge-PS) samples were (90V, 100mA, 1s) and (100V, 10mA, 0.5s), respectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Sheng, Xianhua, Zhizhong Zeng, Changxin Du, Ting Shu und Xiangdong Meng. „Amorphous porous germanium anode with variable dimension for lithium ion batteries“. Journal of Materials Science 56, Nr. 27 (28.06.2021): 15258–67. http://dx.doi.org/10.1007/s10853-021-06264-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Stepanov, A. L., V. I. Nuzhdin, V. F. Valeev, A. M. Rogov, V. V. Vorobev und Y. N. Osin. „Porous germanium formed by low energy high dose Ag + -ion implantation“. Vacuum 152 (Juni 2018): 200–204. http://dx.doi.org/10.1016/j.vacuum.2018.03.030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Chang, S. S., und R. E. Hummel. „Comparison of photoluminescence behavior of porous germanium and spark-processed Ge“. Journal of Luminescence 86, Nr. 1 (Februar 2000): 33–38. http://dx.doi.org/10.1016/s0022-2313(99)00179-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Lockwood, D. J., N. L. Rowell, I. Berbezier, G. Amiard, L. Favre, A. Ronda, M. Faustini und D. Grosso. „Optical Properties of Germanium Dots Self-Assembled on Porous TiO2 Templates“. ECS Transactions 33, Nr. 16 (17.12.2019): 147–65. http://dx.doi.org/10.1149/1.3553166.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Xiao, Ying, Minhua Cao, Ling Ren und Changwen Hu. „Hierarchically porous germanium-modified carbon materials with enhanced lithium storage performance“. Nanoscale 4, Nr. 23 (2012): 7469. http://dx.doi.org/10.1039/c2nr31533e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Koto, Makoto, Ann F. Marshall, Irene A. Goldthorpe und Paul C. McIntyre. „Gold-Catalyzed Vapor-Liquid-Solid Germanium-Nanowire Nucleation on Porous Silicon“. Small 6, Nr. 9 (21.04.2010): 1032–37. http://dx.doi.org/10.1002/smll.200901764.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Mishra, Kuber, Xiao-Chen Liu, Fu-Sheng Ke und Xiao-Dong Zhou. „Porous germanium enabled high areal capacity anode for lithium-ion batteries“. Composites Part B: Engineering 163 (April 2019): 158–64. http://dx.doi.org/10.1016/j.compositesb.2018.10.076.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Kartopu, G., und Y. Ekinci. „Further evidence on the observation of compositional fluctuation in silicon–germanium alloy nanocrystals prepared in anodized porous silicon–germanium films“. Thin Solid Films 473, Nr. 2 (Februar 2005): 213–17. http://dx.doi.org/10.1016/j.tsf.2004.04.064.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Xiao, Chengmao, Ning Du, Yifan Chen, Jingxue Yu, Wenjia Zhao und Deren Yang. „Ge@C three-dimensional porous particles as high-performance anode materials of lithium-ion batteries“. RSC Advances 5, Nr. 77 (2015): 63056–62. http://dx.doi.org/10.1039/c5ra08656f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Akkari, Emna, Oualid Touayar, F. Javier Del Campo und Josep Montserrat. „Improved electrical characteristics of porous germanium photodiode obtained by phosphorus ion implantation“. International Journal of Nanotechnology 10, Nr. 5/6/7 (2013): 553. http://dx.doi.org/10.1504/ijnt.2013.053524.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Karavanskii, V. A., A. A. Lomov, A. G. Sutyrin, V. A. Bushuev, N. N. Loikho, N. N. Melnik, T. N. Zavaritskaya und S. Bayliss. „Raman and X-ray studies of nanocrystals in porous stain-etched germanium“. Thin Solid Films 437, Nr. 1-2 (August 2003): 290–96. http://dx.doi.org/10.1016/s0040-6090(03)00158-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Wolter, S. D., T. Tyler und N. M. Jokerst. „Surface characterization of oxide growth on porous germanium films oxidized in air“. Thin Solid Films 522 (November 2012): 217–22. http://dx.doi.org/10.1016/j.tsf.2012.09.041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Yuan, Ye, Jia Liu, Hao Ren, Xiaofei Jing, Wei Wang, Heping Ma, Fuxing Sun und Huijun Zhao. „Synthesis and characterization of germanium-centered three-dimensional crystalline porous aromatic framework“. Journal of Materials Research 27, Nr. 10 (09.01.2012): 1417–20. http://dx.doi.org/10.1557/jmr.2011.433.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Chubenko, E. B., N. L. Grevtsov, V. P. Bondarenko, I. M. Gavrilin, A. V. Pavlikov, A. A. Dronov, L. S. Volkova und S. A. Gavrilov. „Raman Spectra of Silicon/Germanium Alloy Thin Films Based on Porous Silicon“. Journal of Applied Spectroscopy 89, Nr. 5 (November 2022): 829–34. http://dx.doi.org/10.1007/s10812-022-01432-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Chapotot, Alexandre, Bouraoui Ilahi, Javier Arias-Zapata, Tadeáš Hanuš, Ahmed Ayari, Gwenaëlle Hamon, Jinyoun Cho, Kristof Dessein, Maxime Darnon und Abderraouf Boucherif. „Germanium surface wet-etch-reconditioning for porous lift-off and substrate reuse“. Materials Science in Semiconductor Processing 168 (Dezember 2023): 107851. http://dx.doi.org/10.1016/j.mssp.2023.107851.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Grevtsov, Nikita, Eugene Chubenko, Ilya Gavrilin, Dmitry Goroshko, Olga Goroshko, Ilia Tsiniaikin, Vitaly Bondarenko, Maksim Murtazin, Alexey Dronov und Sergey Gavrilov. „Impact of porous silicon thickness on thermoelectric properties of silicon-germanium alloy films produced by electrochemical deposition of germanium into porous silicon matrices followed by rapid thermal annealing“. Materials Science in Semiconductor Processing 187 (März 2025): 109148. http://dx.doi.org/10.1016/j.mssp.2024.109148.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

ГОРОШКО, Д. Л., И. М. ГАВРИЛИН, А. А. ДРОНОВ, О. А. ГОРОШКО und Л. С. ВОЛКОВА. „STRUCTURE AND THERMAL CONDUCTIVITY OF THIN FILMS OF THE SI1-XGEX ALLOY FORMED BY ELECTROCHEMICAL DEPOSITION OF GERMANIUM INTO POROUS SILICON“. Автометрия 59, Nr. 6 (29.12.2023): 80–88. http://dx.doi.org/10.15372/aut20230609.

Der volle Inhalt der Quelle
Annotation:
Сплошные и пористые плёнки сплавов Si1-xGex с содержанием германия около 40 % и толщиной 3-4 мкм, сформированные на монокристаллическом кремнии методом электрохимического осаждения германия в матрицу пористого кремния с последующим быстрым термическим отжигом при температуре 950 °C, исследованы методами спектроскопии комбинационного рассеяния света (КРС), оптической спектроскопии и сканирующей электронной микроскопии. На основе спектров, снятых в стоксовой и антистоксовой областях частот с использованием статистики Больцмана и закона теплопроводности Фурье, определены коэффициенты теплопроводности плёнок, которые составляют 7-9 и 3-6 Вт / (м ⋅ К) для сплошной и пористой плёнок соответственно. Низкая теплопроводность пористой плёнки объясняется дополнительнымфононным рассеянием на развитой поверхности пор. Перспективность применения таких плёнок в термоэлектрических преобразователях обеспечивается простотой и масштабируемостью способа изготовления сплава, а также его низкой теплопроводностью. Solid and porous films of the Si 1-xGex alloys with a germanium content of about 40% and a thickness of 3-4 μm, formed on single-crystal silicon by electrochemical deposition of germanium into a porous silicon matrix followed by rapid thermal annealing at a temperature of 950 °C, are studied by Raman spectroscopy, optical spectroscopy, and scanning electron microscopy. Based on the Raman spectra taken in the Stokes and anti-Stokes frequency regions, using Boltzmann statistics and the Fourier thermal conductivity law, the thermal conductivity of the films is determined, which is found to be 7-9 and 3-6 W/(m×K) for a continuous and porous film, respectively. The low thermal conductivity of the porous film is explained by additional phonon scattering from the developed pore surface. The prospect of using such films in thermoelectric converters is ensured by the simplicity and scalability of the method for manufacturing the alloy, as well as its low thermal conductivity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Zegadi, Rami, Nathalie Lorrain, Loїc Bodiou, Mohammed Guendouz, Lahcene Ziet und Joël Charrier. „Enhanced mid-infrared gas absorption spectroscopic detection using chalcogenide or porous germanium waveguides“. Journal of Optics 23, Nr. 3 (18.02.2021): 035102. http://dx.doi.org/10.1088/2040-8986/abdf69.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie