Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Germanium poreux“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Germanium poreux" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Germanium poreux"
Chubenko, E. B., N. L. Grevtsov, V. P. Bondarenko, I. M. Gavrilin, A. V. Pavlikov, A. A. Dronov, L. S. Volkova und S. A. Gavrilov. „RAMAN SPECTRА OF SILICON/GERMANIUM ALLOY THIN FILMS BASED ON POROUS SILICON“. Journal of Applied Spectroscopy 89, Nr. 5 (21.09.2022): 614–20. http://dx.doi.org/10.47612/0514-7506-2022-89-5-614-620.
Der volle Inhalt der QuelleGarralaga Rojas, Enrique, Jan Hensen, Jürgen Carstensen, Helmut Föll und Rolf Brendel. „Porous germanium multilayers“. physica status solidi (c) 8, Nr. 6 (07.04.2011): 1731–33. http://dx.doi.org/10.1002/pssc.201000130.
Der volle Inhalt der QuelleGrevtsov, Nikita, Eugene Chubenko, Vitaly Bondarenko, Ilya Gavrilin, Alexey Dronov und Sergey Gavrilov. „Germanium electrodeposition into porous silicon for silicon-germanium alloying“. Materialia 26 (Dezember 2022): 101558. http://dx.doi.org/10.1016/j.mtla.2022.101558.
Der volle Inhalt der QuelleAmato, G., A. M. Rossi, L. Boarino und N. Brunetto. „On the role of germanium in porous silicon-germanium luminescence“. Philosophical Magazine B 76, Nr. 3 (September 1997): 395–403. http://dx.doi.org/10.1080/01418639708241102.
Der volle Inhalt der QuelleLi, Xiu, Wei Guo, Qian Wan und Jianmin Ma. „Porous amorphous Ge/C composites with excellent electrochemical properties“. RSC Advances 5, Nr. 36 (2015): 28111–14. http://dx.doi.org/10.1039/c5ra02459e.
Der volle Inhalt der QuelleXu, Jing, Thanh-Dinh Nguyen, Kai Xie, Wadood Y. Hamad und Mark J. MacLachlan. „Chiral nematic porous germania and germanium/carbon films“. Nanoscale 7, Nr. 31 (2015): 13215–23. http://dx.doi.org/10.1039/c5nr02520f.
Der volle Inhalt der QuelleYin, Huayi, Wei Xiao, Xuhui Mao, Hua Zhu und Dihua Wang. „Preparation of a porous nanostructured germanium from GeO2via a “reduction–alloying–dealloying” approach“. Journal of Materials Chemistry A 3, Nr. 4 (2015): 1427–30. http://dx.doi.org/10.1039/c4ta05244g.
Der volle Inhalt der QuelleRojas, E. Garralaga, J. Hensen, J. Carstensen, H. Föll und R. Brendel. „Lift-off of Porous Germanium Layers“. Journal of The Electrochemical Society 158, Nr. 6 (2011): D408. http://dx.doi.org/10.1149/1.3583645.
Der volle Inhalt der QuelleIsaiev, M., S. Tutashkonko, V. Jean, K. Termentzidis, T. Nychyporuk, D. Andrusenko, O. Marty, R. M. Burbelo, D. Lacroix und V. Lysenko. „Thermal conductivity of meso-porous germanium“. Applied Physics Letters 105, Nr. 3 (21.07.2014): 031912. http://dx.doi.org/10.1063/1.4891196.
Der volle Inhalt der QuellePlatonov, Nikolay, Nail Suleimanov und Valery Bazarov. „Study of the electrophysical properties of nanostructured porous germanium as a promising material for electrodes of electrochemical capacitors“. E3S Web of Conferences 288 (2021): 01073. http://dx.doi.org/10.1051/e3sconf/202128801073.
Der volle Inhalt der QuelleDissertationen zum Thema "Germanium poreux"
Mathiaud, Romain. „Synthèse et structuration de disulfure de germanium en présence de liquides ioniques et de tensioactifs“. Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20088/document.
Der volle Inhalt der QuelleThe controlled elaboration of nanostructured chalcogenides with high specific area or functionalized surface is an interesting challenge. Breakthrough in various domains such as catalysis, gas separation, electrochemistry, photovoltaics or optics can be achieved by the production of chalcogenide materials with functionalized surface or high specific area coupled with high polarisability.The aim of the thesis was to develop new soft chemistry routes for the synthesis of germanium disulfide at room temperature and pressure. Two sulfur precursors, i.e. hydrogen sulfide (H2S) and thioacetamide, and a germanium precursor, the tetraethoxigermanium were used for the syntheses. The syntheses were carried out either in the presence or in the absence of a template, in most case an ionic liquid (IL).Syntheses without templating agent led to amorphous or nano-organized GeS2 nanoparticles of 20 to 35 nm in diameter and interesting specific areas (320 m2.g-1 with H2S, 270 m2.g-1 with thioacetamide). Hybrid materials comprising GeS2 and LI cation with a general formula 0.2GeS2-0.8 organic cation were obtained in the presence of IL. The obtained particles of nanometric sizes and with hardly any specific area have a morphology that depends on the nature of the organic cation present during the synthesis, i .e. spheres or gypsum rosette-like particles. XPS measurements indicate the presence of Ge-S- bonds in the hybrid material. The use of lithium de bis(trifluorométhanesulfonyl)imide led to the elaboration of a GeS2-Li material which conductivity of ~10-10 S.cm-1 is that of an ionic salt.A first iono-chalcogel which could lead after optimization to a porous chalcogenide has been elaborated when using the IL as both the solvent and the templating agent and in the absence of any other solvent. The use of hexadecilamine (HDA) above its critical micellar concentration, led to hybrid nanoparticles of 15 nm in size with interesting specific area (130 m2.g-1) but also intra-granular porosity.In conclusion, this exploratory work led to the elaboration of GeS2 either as naoparticles with high specific area or particles with intragranular porosity or finally hybrid materials with GeS2 interacting with an organic cation, the final product depending upon the chosen soft chemistry route.Keywords: chalcogenide, ionic liquid, organic-inorganic hybrid, morphology, soft chemistry
Jaafar, Abdallah. „Développement de matériaux poreux pour des applications de détection en optique intégrée dans le moyen infrarouge“. Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS043.
Der volle Inhalt der QuelleIntegrated sensors based on guided optical devices can efficiently and selectively detect pollutant molecules present in water, air, and environment. The porous structure allows the targeted molecules to penetrate into the pores, leads to volume detection. This characteristic greatly enhances the sensitivity and the ability to detect a very small number of molecules. In this study, two mid-infrared (mid-IR) transparent materials were investigated for the evelopment of integrated optical waveguides: porous silicon (PSi) and porous germanium (PGe). PSi is produced by electrochemical anodization and can be used up to a wavelength of 8 µm. PSi-based planar and ridge waveguides were developed from lightly or heavily P-doped silicon substrates. The effect of thermal oxidation treatment on the optical properties of the waveguides was investigated. Transduction tests were carried out to detect carbon dioxide (CO₂) in the mid-IR at around 4.3 µm wavelength. On the other hand, PGe is produced using bipolar electrochemical etching, extending the detection range to a wavelength of 14 µm. This material offers a considerable advantage for the development of an integrated optical sensor, as most polluting molecules have an absorption band in the mid-IR spectral range. Thin and homogeneous PGe layers were obtained. An initial test for the fabrication of a Bragg mirror was also conducted
Wang, Xu-xu. „Modification de solides micro - et méso - poreux par chimie organométallique de surface“. Lyon 1, 1999. http://www.theses.fr/1999LYO10327.
Der volle Inhalt der QuelleButtard, Denis. „Étude structurale du silicium poreux de type p par diffraction haute résolution des rayons X“. Université Joseph Fourier (Grenoble ; 1971-2015), 1997. http://www.theses.fr/1997GRE10141.
Der volle Inhalt der QuelleTutashkonko, Sergii. „Élaboration du Ge mésoporeux et étude de ses propriétés physico-chimiques en vue d'applications photovoltaïques“. Thèse, Université de Sherbrooke, 2013. http://hdl.handle.net/11143/6145.
Der volle Inhalt der QuelleGarchery, Laurent. „Fabrication et étude des propriétés physiques des nanostructures Si/SiGe : application aux nouveaux dispositifs“. Université Joseph Fourier (Grenoble), 1996. http://www.theses.fr/1996GRE10232.
Der volle Inhalt der QuelleFUGATTINI, Silvio. „Binder-free porous germanium anode for Li-ion batteries“. Doctoral thesis, Università degli studi di Ferrara, 2019. http://hdl.handle.net/11392/2488081.
Der volle Inhalt der QuellePer sviluppare batterie agli ioni di litio ad alta densità energetica, è necessario l’utilizzo di nuovi materiali elettrodici. Il germanio è una delle possibili alternative all’anodo più comunemente impiegato, la grafite (372 mAh/g), grazie alla sua capacità gravimetrica teorica quattro volte maggiore (1600 mAh/g). In questo lavoro viene presentato un processo in due fasi per realizzare un anodo in germanio poroso privo di legante (binder), realizzando film di semiconduttore su substrati metallici mediante deposizione chimica da fase vapore assisitita da plasma (PECVD) ed effettuando successivamente un attacco elettrochimico con acido fluoridrico per creare una struttura porosa. L’elettrodo in germanio poroso ha raggiunto una capacità di 1250 mAh/g ad una velocità di carica/scarica pari ad 1C (1C = 1600 mA/g) mantenendo, inoltre, una capacità stabilmente superiore a 1100 mAh/g per più di 1000 cicli a diversi C-rate fino a 5C. Sia la tecnica di deposizione che quella di attacco chimico sono scalabili per la produzione industriale, i cui possibili campi di applicazione sono il settore aerospaziale o medico, a causa dell’elevato costo del germanio come materia prima.
Huang, Xuezhen. „Fabrication and optical properties of (I) erbium-doped nanowires containing germanium and/or zinc oxide and (II) porous germanium nanowires“. [Fort Worth, Tex.] : Texas Christian University, 2010. http://etd.tcu.edu/etdfiles/available/etd-04282010-134727/unrestricted/Huang.pdf.
Der volle Inhalt der QuelleKitschke, Philipp, Marc Walter, Tobias Rüffer, Andreas Seifert, Florian Speck, Thomas Seyller, Stefan Spange et al. „Porous Ge@C materials via twin polymerization of germanium(II) salicyl alcoholates for Li-ion batteries“. Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-197302.
Der volle Inhalt der QuelleDieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
CALABRESE, Gabriele. „Relaxed germanium epilayers on porous silicon buffers for low dislocation content Ge on Si virtual substrates“. Doctoral thesis, Università degli studi di Ferrara, 2015. http://hdl.handle.net/11392/2389093.
Der volle Inhalt der QuelleBuchteile zum Thema "Germanium poreux"
Armatas, Gerasimos S., und Mercouri G. Kanatzidis. „Germanium-Based Porous Semiconductors from Molecular Zintl Anions“. In Zintl Ions, 133–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/430_2010_22.
Der volle Inhalt der QuelleNiwa, Miki, und Yuichi Murakami. „Function and characterization of CVD zeolites with controlled pore-opening sizes“. In Chemistry and Technology of Silicon and Tin, 203–16. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780198555803.003.0014.
Der volle Inhalt der QuelleRogov, Alexey M., Viacheslav V. Vorobev, Vladimir I. Nuzhdin, Valery F. Valeev und Andrey L. Stepanov. „Porous silicon and germanium thin layers with silver nanoparticles“. In Nanocomposites for Photonic and Electronic Applications, 167–92. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-818396-0.00007-8.
Der volle Inhalt der QuellePaillaud, J. L., Y. Lorgouilloux, B. Harbuzaru, P. Caullet, J. Patarin und N. Bats. „Structure orienting role of germanium in zeolite synthesis“. In From Zeolites to Porous MOF Materials - The 40th Anniversary of International Zeolite Conference, Proceedings of the 15th International Zeolite Conference, 389–96. Elsevier, 2007. http://dx.doi.org/10.1016/s0167-2991(07)80865-2.
Der volle Inhalt der QuelleNiwa, Miki, Carmela V. Hidalgo, Tadashi Hattori und Yuichi Murakami. „Germanium Methoxide: New Reagent for Controlling the Pore-Opening Size of Zeolite by CVD“. In Studies in Surface Science and Catalysis, 297–304. Elsevier, 1986. http://dx.doi.org/10.1016/s0167-2991(09)60886-7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Germanium poreux"
Wietler, Tobias F., Eddy P. Rugeramigabo, Eberhard Bugiel und Enrique Garralaga Rojas. „Relaxed Germanium on Porous Silicon Substrates“. In 2012 International Silicon-Germanium Technology and Device Meeting (ISTDM). IEEE, 2012. http://dx.doi.org/10.1109/istdm.2012.6222502.
Der volle Inhalt der QuelleSchreiber, Waldemar, Jens Ohlmann, Patrick Schygulla, Stefan Janz, Jinyoun Cho und Kristof Dessein. „III-V Epitaxy on Detachable Porous Germanium 4” Substrates“. In 2023 IEEE 50th Photovoltaic Specialists Conference (PVSC). IEEE, 2023. http://dx.doi.org/10.1109/pvsc48320.2023.10359546.
Der volle Inhalt der QuelleKabashin, Andrei V., Vincent-Gabriel Pilon Marien, D. Q. Yang, F. Magny und Michel Meunier. „Porous nanostructured layers on germanium produced by laser optical breakdown processing“. In High-Power Lasers and Applications, herausgegeben von Alberto Pique, Koji Sugioka, Peter R. Herman, Jim Fieret, Friedrich G. Bachmann, Jan J. Dubowski, Willem Hoving et al. SPIE, 2003. http://dx.doi.org/10.1117/12.478574.
Der volle Inhalt der QuelleDaniel, Valentin, Thomas Bidaud, Jeremie Chretien, Abdelatif Jaouad, Jean-francois Lerat, Nicolas Paupy, Bouraoui Ilahi et al. „Characteristics of Detachable III-V Solar Cells Grown on Porous Germanium“. In 2023 IEEE 50th Photovoltaic Specialists Conference (PVSC). IEEE, 2023. http://dx.doi.org/10.1109/pvsc48320.2023.10359809.
Der volle Inhalt der QuelleTsybeskov, L., K. L. Moore, S. P. Duttagupta, K. D. Hirschman, D. G. Hall und P. M. Fauchet. „Fabrication and Luminescence of Large Si Nanocrystals“. In Chemistry and Physics of Small-Scale Structures. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/cps.1997.ctub.6.
Der volle Inhalt der QuelleDaniel, Valentin, Jeremie Chretien, Gwenaelle Hamon, Mathieu De Lafontaine, Nicolas Paupy, Zakaria Oulad El Hmaidi, Bouraoui Ilahi, Tadeas Hanus, Maxime Darnon und Abderraouf Boucherif. „Micro-fabrication and transfer of a detachable Ge epitaxial layer grown on porous germanium“. In 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC). IEEE, 2022. http://dx.doi.org/10.1109/pvsc48317.2022.9938777.
Der volle Inhalt der QuelleTsybeskov, L., K. D. Hirschman, S. P. Duttagupta, D. G. Hall und P. M. Fauchet. „Fabrication and Characterization of Si Dots Prepared by Self-Organized Recrystallization“. In Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/qo.1997.qfc.4.
Der volle Inhalt der QuelleRivera, Johan, und Ongi Englander. „Mechanical and Thermal Properties of Highly Organized Nanowire-Alumina Nanocomposites“. In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-38186.
Der volle Inhalt der QuelleKallel, A., G. Roux, T. Derycke, C. L. Martin, M. Marinova und C. Cayron. „Microstructure and thermoelectric properties of bulk and porous n-type silicon-germanium alloy prepared by HUP“. In 9TH EUROPEAN CONFERENCE ON THERMOELECTRICS: ECT2011. AIP, 2012. http://dx.doi.org/10.1063/1.4731583.
Der volle Inhalt der QuelleArvinte, Roxana, Samuel Cailleaux, Alex Brice Poungoue Mbeunmi, Alexandre Heintz, Richard Ares und Abderraouf Boucherif. „Epitaxial lift-off process for III-V solar cells by using porous germanium for substrate re-use“. In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9301028.
Der volle Inhalt der Quelle