Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Geometry of null manifolds“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Geometry of null manifolds" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Geometry of null manifolds"
Atindogbé, C., M. Gutiérrez und R. Hounnonkpe. „Compact null hypersurfaces in Lorentzian manifolds“. Advances in Geometry 21, Nr. 2 (01.04.2021): 251–63. http://dx.doi.org/10.1515/advgeom-2021-0001.
Der volle Inhalt der QuelleMassamba, Fortuné. „Symmetries of Null Geometry in Indefinite Kenmotsu Manifolds“. Mediterranean Journal of Mathematics 10, Nr. 2 (24.06.2012): 1079–99. http://dx.doi.org/10.1007/s00009-012-0205-5.
Der volle Inhalt der QuelleHoffman, Neil R., und Nathan S. Sunukjian. „Null-homologous exotic surfaces in 4–manifolds“. Algebraic & Geometric Topology 20, Nr. 5 (04.11.2020): 2677–85. http://dx.doi.org/10.2140/agt.2020.20.2677.
Der volle Inhalt der QuelleCuadros Valle, Jaime. „Null Sasaki $$\eta $$ -Einstein structures in 5-manifolds“. Geometriae Dedicata 169, Nr. 1 (24.04.2013): 343–59. http://dx.doi.org/10.1007/s10711-013-9859-9.
Der volle Inhalt der QuelleAkamine, Shintaro, Atsufumi Honda, Masaaki Umehara und Kotaro Yamada. „Null hypersurfaces in Lorentzian manifolds with the null energy condition“. Journal of Geometry and Physics 155 (September 2020): 103751. http://dx.doi.org/10.1016/j.geomphys.2020.103751.
Der volle Inhalt der QuelleRovenski, Vladimir, Sergey Stepanov und Josef Mikeš. „A Note on the Geometry of Certain Classes of Lichnerowicz Laplacians and Their Applications“. Mathematics 11, Nr. 21 (26.10.2023): 4434. http://dx.doi.org/10.3390/math11214434.
Der volle Inhalt der QuelleMassamba, Fortuné, und Samuel Ssekajja. „Some Remarks on Quasi-Generalized CR-Null Geometry in Indefinite Nearly Cosymplectic Manifolds“. International Journal of Mathematics and Mathematical Sciences 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/9613182.
Der volle Inhalt der QuelleMassamba, Fortuné, und Samuel Ssekajja. „A geometric flow on null hypersurfaces of Lorentzian manifolds“. Topological Algebra and its Applications 10, Nr. 1 (01.01.2022): 185–95. http://dx.doi.org/10.1515/taa-2022-0126.
Der volle Inhalt der QuelleDuggal, K. L. „A Review on Unique Existence Theorems in Lightlike Geometry“. Geometry 2014 (07.07.2014): 1–17. http://dx.doi.org/10.1155/2014/835394.
Der volle Inhalt der QuelleKim, Jin Hong. „On null cobordism classes of quasitoric manifolds and their small covers“. Topology and its Applications 285 (November 2020): 107412. http://dx.doi.org/10.1016/j.topol.2020.107412.
Der volle Inhalt der QuelleDissertationen zum Thema "Geometry of null manifolds"
Vilatte, Matthieu. „Adventures in (thermal) Wonderland“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. https://theses.hal.science/tel-04791687.
Der volle Inhalt der QuelleThe work we present in this thesis is structured around the concepts of field theories and geometry, which are applied to gravity and thermalisation.On the gravity side, our work aims at shedding new light on the asymptotic structure of the gravitational field in the context of asymptotically flat spacetimes, using information encoded on the conformal boundary. The latter is a null hypersurface on which Carrollian physics instead of relativistic physics is at work. A Carroll structure on a manifold is a degenerate metric and a vector field spanning the kernel of the latter. This vector selects a particular direction which can be the starting point for describing Carroll structures in a split frame. We first elaborate on the geometry one can construct on such a manifold in this frame, including a comprehensive study of connections and (conformal isometries). Effective actions can be defined on a Carrollian background. Canonical momenta conjugate to the geometry or the connection are introduced, and the variation of the action shall give their conservation equations, upon which isometric charges can be reached.Carrollian physics is also known to emerge as the vanishing speed of light of relativistic physics. This limit usually exhibits more Carrollian descendants than what might be expected from a naive intrinsic analysis, as shown in the explicit examples of Carrollian fluids, Carrollian scalar fields (for which two actions, electric and magnetic arise in the limit) and the Carrollian Chern-Simons action. The richness of the limiting procedure is due to this versatility in describing a palette of degrees of freedom. This turns out to be an awesome tool in studying the relationship between asymptotically anti de Sitter (AdS) and flat spacetimes.Metrics on asymptotically flat spacetimes can be expressed as an infinite expansion in a gauge, covariant with respect to their null boundaries. This slight extension of the Newman-Unti gauge is shown to be valid also in AdS, which allows to take the flat limit in the bulk i.e. the Carrollian limit on the boundary, while preserving this covariance feature. We demonstrate that the infinite solution space of Ricci-flat spacetimes actually arises from the Laurent expansion of the AdS boundary energy-momentum tensor. These replicas obey at each order Carrollian dynamics (flux/balance laws). Focusing our attention to Petrov algebraically special spacetimes (for which the infinite expansion resums), we use the Carrollian flux/balance laws together with the conservation of the energy-momentum and Cotton tensors to build two dual towers of bulk charges from a purely boundary perspective. Among them we recover the mass and angular momentum mutipolar moments for the Kerr-Taub-NUT family. The covariant gauge is also the appropriate framework to unveil the action of hidden symmetries of gravity on the null boundary. In this thesis we study exhaustively the case of Ehlers' $SL(2,mathbb{R})$ symmetry.On the side of thermal field theory we see that while at infinite temperature a CFT is described by its spectrum and the OPE coefficients, additional data is needed in the thermal case. These are the average values of primary operators, completely determined up to a constant coefficient. Numerical simulations, duality with black-hole states in AdS or spectral analyses are the methods usually employed to uncover the latter. Our work features a new breadth. Starting from two coupled harmonic oscillators, we show that they are related to conformal ladder graphs of fishnet theories. This observation is the first step for setting a new correspondence between thermal partition functions and graphs
Iakovidis, Nikolaos. „Geometry of Toric Manifolds“. Thesis, Uppsala universitet, Teoretisk fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-277709.
Der volle Inhalt der QuelleButtler, Michael. „The geometry of CR manifolds“. Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312247.
Der volle Inhalt der QuelleWelly, Adam. „The Geometry of quasi-Sasaki Manifolds“. Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20466.
Der volle Inhalt der QuelleClancy, Robert. „Spin(7)-manifolds and calibrated geometry“. Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:c37748b3-674a-4d95-8abf-7499474abce3.
Der volle Inhalt der QuellePena, Moises. „Geodesics on Generalized Plane Wave Manifolds“. CSUSB ScholarWorks, 2019. https://scholarworks.lib.csusb.edu/etd/866.
Der volle Inhalt der QuelleTievsky, Aaron M. „Analogues of Kähler geometry on Sasakian manifolds“. Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45349.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 53-54).
A Sasakian manifold S is equipped with a unit-length, Killing vector field ( which generates a one-dimensional foliation with a transverse Kihler structure. A differential form a on S is called basic with respect to the foliation if it satisfies [iota][epsilon][alpha] = [iota][epsilon]d[alpha] = 0. If a compact Sasakian manifold S is regular, i.e. a circle bundle over a compact Kähler manifold, the results of Hodge theory in the Kahler case apply to basic forms on S. Even in the absence of a Kähler base, there is a basic version of Hodge theory due to El Kacimi-Alaoui. These results are useful in trying to imitate Kähler geometry on Sasakian manifolds; however, they have limitations. In the first part of this thesis, we will develop a "transverse Hodge theory" on a broader class of forms on S. When we restrict to basic forms, this will give us a simpler proof of some of El Kacimi-Alaoui's results, including the basic dd̄-lemma. In the second part, we will apply the basic dd̄-lemma and some results from our transverse Hodge theory to conclude (in the manner of Deligne, Griffiths, and Morgan) that the real homotopy type of a compact Sasakian manifold is a formal consequence of its basic cohomology ring and basic Kähler class.
by Aaron Michael Tievsky.
Ph.D.
Kotschick, Dieter. „On the geometry of certain 4 - manifolds“. Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236179.
Der volle Inhalt der QuelleViaggi, Gabriele [Verfasser]. „Geometry of random 3-manifolds / Gabriele Viaggi“. Bonn : Universitäts- und Landesbibliothek Bonn, 2020. http://d-nb.info/1208764896/34.
Der volle Inhalt der QuelleBaier, P. D. „Special Lagrangian geometry“. Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365884.
Der volle Inhalt der QuelleBücher zum Thema "Geometry of null manifolds"
1940-, Shiohama K., Japan Monbushō und Symposium on Differential Geometry (1988- ) (35th : 1988 : Shinshu University), Hrsg. Geometry of manifolds. Boston: Academic Press, 1989.
Den vollen Inhalt der Quelle findenCrittenden, Richard J., d. 1996., Hrsg. Geometry of manifolds. Providence, R.I: American Mathematical Society, 2001.
Den vollen Inhalt der Quelle findenBoyer, Charles P. Sasakian geometry. New York: Oxford University Press, 2007.
Den vollen Inhalt der Quelle findenLovett, Stephen. Differential geometry of manifolds. Natick, Mass: A.K. Peters, 2010.
Den vollen Inhalt der Quelle findenKock, Anders. Synthetic Geometry of Manifolds. Leiden: Cambridge University Press, 2009.
Den vollen Inhalt der Quelle findenLovett, Stephen. Differential geometry of manifolds. Natick, Mass: A.K. Peters, 2010.
Den vollen Inhalt der Quelle findenEarle, Clifford J., William J. Harvey und Sevín Recillas-Pishmish, Hrsg. Complex Manifolds and Hyperbolic Geometry. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/conm/311.
Der volle Inhalt der QuelleBrozos-Vázquez, Miguel, Eduardo García-Río, Peter Gilkey, Stana Nikčević und Ramón Vázques-Lorenzo. The Geometry of Walker Manifolds. Cham: Springer International Publishing, 2009. http://dx.doi.org/10.1007/978-3-031-02397-2.
Der volle Inhalt der QuelleSunada, Toshikazu, Hrsg. Geometry and Analysis on Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0083042.
Der volle Inhalt der QuelleMatić, Gordana, und Clint McCrory, Hrsg. Topology and Geometry of Manifolds. Providence, Rhode Island: American Mathematical Society, 2003. http://dx.doi.org/10.1090/pspum/071.
Der volle Inhalt der QuelleBuchteile zum Thema "Geometry of null manifolds"
Duggal, Krishan L., und Aurel Bejancu. „Geometry of Null Curves in Lorentz Manifolds“. In Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, 52–76. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-2089-2_3.
Der volle Inhalt der QuelleOlea, Benjamín. „Null Hypersurfaces on Lorentzian Manifolds and Rigging Techniques“. In Lorentzian Geometry and Related Topics, 237–51. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66290-9_13.
Der volle Inhalt der QuelleCarmo, Manfredo Perdigão do. „Differentiable Manifolds“. In Riemannian Geometry, 1–34. Boston, MA: Birkhäuser Boston, 2013. http://dx.doi.org/10.1007/978-1-4757-2201-7_1.
Der volle Inhalt der QuelleConlon, Lawrence. „Riemannian Geometry“. In Differentiable Manifolds, 293–348. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4757-2284-0_10.
Der volle Inhalt der QuelleLang, Serge. „Manifolds“. In Fundamentals of Differential Geometry, 22–42. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0541-8_2.
Der volle Inhalt der QuelleLivingston, Charles. „Null-homologous unknottings“. In Topology and Geometry, 59–68. Zuerich, Switzerland: European Mathematical Society Publishing House, 2021. http://dx.doi.org/10.4171/irma/33-1/3.
Der volle Inhalt der QuelleBallmann, Werner. „Manifolds“. In Introduction to Geometry and Topology, 27–67. Basel: Springer Basel, 2018. http://dx.doi.org/10.1007/978-3-0348-0983-2_2.
Der volle Inhalt der QuelleEschrig, Helmut. „Manifolds“. In Topology and Geometry for Physics, 55–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14700-5_3.
Der volle Inhalt der QuelleDragomir, Sorin, und Liviu Ornea. „L.c.K. Manifolds“. In Locally Conformal Kähler Geometry, 1–5. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-2026-8_1.
Der volle Inhalt der QuelleShafarevich, Igor R. „Complex Manifolds“. In Basic Algebraic Geometry 2, 153–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57956-1_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Geometry of null manifolds"
ROMERO, ANTONIO, ROCIO VELÁZQUEZ-MATA, ANTONIO TADEU und PEDRO GALVÍN. „ACOUSTIC WAVE SCATTERING BY NULL-THICKNESS BODIES WITH COMPLEX GEOMETRY“. In BEM/MRM 47, 135–46. Southampton UK: WIT Press, 2024. http://dx.doi.org/10.2495/be470111.
Der volle Inhalt der QuelleNAKOVA, Galia. „NULL CURVES ON THE UNIT TANGENT BUNDLE OF A TWO-DIMENSIONAL KÄHLER-NORDEN MANIFOLD“. In 5th International Colloquium on Differential Geometry and its Related Fields. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813220911_0008.
Der volle Inhalt der QuelleMasa, Xosé, Enrique Macias-Virgós und Jesús A. Alvarez López. „Analysis and Geometry in Foliated Manifolds“. In 7th International Collóquium on Differential Geometry. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814533119.
Der volle Inhalt der QuellePESTOV, IVANGOE B. „GEOMETRY OF MANIFOLDS AND DARK MATTER“. In Proceedings of the 5th International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810144_0016.
Der volle Inhalt der QuelleARSLAN, KADRI, und CENGIZHAN MURATHAN. „CONTACT METRIC R-HARMONIC MANIFOLDS“. In Geometry and Topology of Submanifolds IX. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817976_0002.
Der volle Inhalt der QuelleDefever, Filip, Ryszard Deszcz, Marian Hotloś, Marek Kucharski und Zerrin Şentürk. „ON MANIFOLDS OF PSEUDOSYMMETRIC TYPE“. In Geometry and Topology of Submanifolds IX. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817976_0010.
Der volle Inhalt der QuelleBoyom, Michel Nguiffo. „Some lagrangian invariants of symplectic manifolds“. In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-27.
Der volle Inhalt der QuelleSadowski, Michał. „Holonomy groups of complete flat manifolds“. In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-28.
Der volle Inhalt der QuelleBordoni, Manlio, Carlos Herdeiro und Roger Picken. „Construction of Isospectral Manifolds“. In XIX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS. AIP, 2011. http://dx.doi.org/10.1063/1.3599144.
Der volle Inhalt der QuelleLibermann, Paulette. „Charles Ehresmann's concepts in differential geometry“. In Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-2.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Geometry of null manifolds"
Naber, Gregory. Invariants of Smooth Four-manifolds: Topology, Geometry, Physics. GIQ, 2012. http://dx.doi.org/10.7546/giq-3-2002-105-140.
Der volle Inhalt der QuelleBeurlot, Kyle, Mark Patterson und Timothy Jacobs. PR-457-22210-R01 Effects of Inlet Port Geometry on MCC Mixing Sensitivity Study. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2024. http://dx.doi.org/10.55274/r0000061.
Der volle Inhalt der Quelle