Dissertationen zum Thema „Geometry, Algebraic“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Geometry, Algebraic" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Miscione, Steven. „Loop algebras and algebraic geometry“. Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116115.
Der volle Inhalt der QuelleLurie, Jacob 1977. „Derived algebraic geometry“. Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/30144.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 191-193).
The purpose of this document is to establish the foundations for a theory of derived algebraic geometry based upon simplicial commutative rings. We define derived versions of schemes, algebraic spaces, and algebraic stacks. Our main result is a derived analogue of Artin's representability theorem, which provides a precise criteria for the representability of a moduli functor by geometric objects of these types.
by Jacob Lurie.
Ph.D.
Balchin, Scott Lewis. „Augmented homotopical algebraic geometry“. Thesis, University of Leicester, 2017. http://hdl.handle.net/2381/40623.
Der volle Inhalt der QuelleRennie, Adam Charles. „Noncommutative spin geometry“. Title page, contents and introduction only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phr4163.pdf.
Der volle Inhalt der QuelleDos, Santos João Pedro Pinto. „Fundamental groups in algebraic geometry“. Thesis, University of Cambridge, 2006. https://www.repository.cam.ac.uk/handle/1810/252015.
Der volle Inhalt der QuelleSlaatsveen, Anna Aarstrand. „Decoding of Algebraic Geometry Codes“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13729.
Der volle Inhalt der QuelleBirkar, Caucher. „Topics in modern algebraic geometry“. Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421475.
Der volle Inhalt der QuelleLundman, Anders. „Topics in Combinatorial Algebraic Geometry“. Doctoral thesis, KTH, Matematik (Avd.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176878.
Der volle Inhalt der QuelleDen här avhandlingen utgörs av sex artiklar inom algebraisk geometri som är nära kopplade till kombinatorik. I artikel A betraktar vi kompletta inbäddningar av glatta toriska variteter X ↪ PN sådana att för något fixt heltal k är det t-te oskulerande rummet i varje punkt av maximal dimension om och endast om t ≤ k. Vårt huvudresultat är att detta antagande är ekvivalent med att den polytop som motsvarar inbäddningen är en Cayleypolytop av ordning k, vars samtliga kanter har längd åtminstonde k. Detta resultat generaliserar en tidigare känd karaktärisering av David Perkinson. Vi visar även att ovanstående antagande är ekvivalent med antagandet att Seshadri- konstanten är lika med k i varje punkt i X. Därmed generaliserar vårt resultat ett tidigare resultat av Atsushi Ito. I artikel B introducerar vi H-konstanter, vilka mäter negativiteten av kurvor på uppblåsningar av ytor. Vi relaterar dessa konstanter till den begränsade negativitetsförmodan. Vidare erhåller vi begränsningar för konstanterna när vi enbart betraktar unioner av linjer i det reella och komplexa projektiva planet. I artikel C studerar vi Gaussavbildningen av ordning k, för k > 1, som avbildar en punkt i en varitet på det k-te oskulerande rummet i samma punkt. Vårt huvudresultat är att, i likhet med fallet k = 1, är dessa högre ordningens Gaussavbildningar ändliga på glatta variteter vars k-te oskulerande rum är fulldimensionellt överallt. Vidare ger vi konvexgeometriska beskrivningar av dessa avbildningar för toriska variteter. I artikel D klassificerar vi scheman av tjocka punkter på Hirzebruchytor vars initalsekvenser är av maximal eller nära maximal längd. Intitialgraden och initialsekvensen för sådana scheman är nära relaterade till den välkända Nagata- förmodan. I artikel E introducerar vi paketet LatticePolytopes till Macaulay2. Detta paket utökar funktionaliteten i Macaulay2 för beräkningar inom torisk och konvex geometri. I artikel F beräknar vi Seshadrikonstanten i generella punkter på glatta toriska ytor som uppfyller vissa konvexgeometriska villkor på de associerade polygonerna. Våra beräkningar koppplar samman Seshadrikonstanten i en generell punkt med jetsepareringen och det icke-normaliserade spektralvärdet hos ytorna.
QC 20151112
Hu, Jiawei. „Partial actions in algebraic geometry“. Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/273459.
Der volle Inhalt der QuelleDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Garcia-Puente, Luis David. „Algebraic Geometry of Bayesian Networks“. Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/11133.
Der volle Inhalt der QuellePh. D.
Mikami, Ryota. „Tropical geometry and algebraic cycles“. Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263437.
Der volle Inhalt der QuelleKileel, Joseph David. „Algebraic Geometry for Computer Vision“. Thesis, University of California, Berkeley, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10282753.
Der volle Inhalt der QuelleThis thesis uses tools from algebraic geometry to solve problems about three-dimensional scene reconstruction. 3D reconstruction is a fundamental task in multiview geometry, a field of computer vision. Given images of a world scene, taken by cameras in unknown positions, how can we best build a 3D model for the scene? Novel results are obtained for various challenging minimal problems, which are important algorithmic routines in Random Sampling Consensus pipelines for reconstruction. These routines reduce overfitting when outliers are present in image data.
Our approach throughout is to formulate inverse problems as structured systems of polynomial equations, and then to exploit underlying geometry. We apply numerical algebraic geometry, commutative algebra and tropical geometry, and we derive new mathematical results in these fields. We present simulations on image data as well as an implementation of general-purpose homotopy-continuation software for implicitization in computational algebraic geometry.
Chapter 1 introduces some relevant computer vision. Chapters 2 and 3 are devoted to the recovery of camera positions from images. We resolve an open problem concerning two calibrated cameras raised by Sameer Agarwal, a vision expert at Google Research, by using the algebraic theory of Ulrich sheaves. This gives a robust test for identifying outliers in terms of spectral gaps. Next, we quantify the algebraic complexity for notorious poorly understood cases for three calibrated cameras. This is achieved by formulating in terms of structured linear sections of an explicit moduli space and then computing via homotopy-continuation. In Chapter 4, a new framework for modeling image distortion is proposed, based on lifting algebraic varieties in projective space to varieties in other toric varieties. We check that our formulation leads to faster and more stable solvers than the state of the art. Lastly, Chapter 5 concludes by studying possible pictures of simple objects, as varieties inside products of projective planes. In particular, this dissertation exhibits that algebro-geometric methods can actually be useful in practical settings.
Waelder, Robert. „Elliptic genera in algebraic geometry“. Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1619148881&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Der volle Inhalt der QuelleMilione, Piermarco. „Shimura curves and their p-adic uniformization = Corbes de Shimura i les seves uniformitzacions p-àdiques“. Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/402209.
Der volle Inhalt der QuelleEklund, David. „Topics in computation, numerical methods and algebraic geometry“. Doctoral thesis, KTH, Matematik (Avd.), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-25941.
Der volle Inhalt der QuelleQC 20101115
Björklund, Johan. „Knots and Surfaces in Real Algebraic and Contact Geometry“. Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-156908.
Der volle Inhalt der QuelleHeier, Gordon. „Some effective results in algebraic geometry“. [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965086631.
Der volle Inhalt der QuelleDe, Zeeuw Frank. „An algebraic view of discrete geometry“. Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/38158.
Der volle Inhalt der QuelleThaddeus, Michael. „Algebraic geometry and the Verlinde formula“. Thesis, University of Oxford, 1992. http://ora.ox.ac.uk/objects/uuid:12af7dda-26f7-44ec-b335-74193ce1c538.
Der volle Inhalt der QuelleFrancis, John (John Nathan Kirkpatrick). „Derived algebraic geometry over En̳-rings“. Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43792.
Der volle Inhalt der QuelleIn title on t.p., double underscored "n" appears as subscript.
Includes bibliographical references (p. 55-56).
We develop a theory of less commutative algebraic geometry where the role of commutative rings is assumed by En-rings, that is, rings with multiplication parametrized by configuration spaces of points in Rn. As n increases, these theories converge to the derived algebraic geometry of Tobn-Vezzosi and Lurie. The class of spaces obtained by gluing En-rings form a geometric counterpart to En-categories, which are higher topological variants of braided monoidal categories. These spaces further provide a geometric language for the deformation theory of general E, structures. A version of the cotangent complex governs such deformation theories, and we relate its values to E&-Hochschild cohomology. In the affine case, this establishes a claim made by Kontsevich. Other applications include a geometric description of higher Drinfeld centers of SE-categories, explored in work with Ben-Zvi and Nadler.
by John Francis.
Ph.D.
Kotschick, Dieter. „On the geometry of certain 4 - manifolds“. Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236179.
Der volle Inhalt der QuelleLi, Shiyue. „Tropical Derivation of Cohomology Ring of Heavy/Light Hassett Spaces“. Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/hmc_theses/104.
Der volle Inhalt der QuelleLundkvist, Christian. „Moduli spaces of zero-dimensional geometric objects“. Doctoral thesis, Stockholm : Matematik, Kungliga Tekniska högskolan, 2009. http://www.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:223079.
Der volle Inhalt der QuelleSarmiento-Lopez, X. I. „Algebraic problems in matroid theory“. Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298554.
Der volle Inhalt der QuelleLewis, Matthew. „Error correction of generalised algebraic-geometry codes“. Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407473.
Der volle Inhalt der QuelleZong, Hong R. „Topics in birational geometry of algebraic varieties“. Thesis, Princeton University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3665359.
Der volle Inhalt der QuelleVarious questions related to birational properties of algebraic varieties are concerned.
Rationally connected varieties are recognized as the buildings blocks of all varieties by the Minimal Model theory. We prove that every curve on a separably rationally connected variety is rationally equivalent to a (non-effective) integral sum of rational curves. That is, the Chow group of 1-cycles is generated by rational curves. As a consequence, we solve a question of Professor Burt Totaro on integral Hodge classes on rationally connected 3-folds. And by a result of Professor Claire Voisin, the general case will be a consequence of the Tate conjecture for surfaces over finite fields.
Using the same philosophy looking for degenerated rational components through forgetful maps between moduli spaces of curves, we prove Weak Approximation conjecture to Prof. Hassett and Prof. Tschinkel for isotrivial families of rationally connected varieties. Theory of Twisted Stable maps is essentially used, with an alternative proof where some notion from Derived Algebraic Geometry is applied. It is remarkable that technics and ideas developed in this part, shed light upon and essentially led to the final solution to weak approximation of Cubic Surfaces, which is a problem concerned by Number Theorists for many years, and this is currently the best known result in this subject.
Then we turn to Minimal Model theory in both zero and positive characteristics. Firstly, projective globally F-regular threefolds of characteristic p ≥ 11, are shown to be rationally chain connected, and back to characteristic zero, we use hard-core technics of Minimal Model program, esp. finite generate of canonical rings due to Professor Hacon, Professor McKernan et al. to characterize Toric varieties and geometric rational varieties as log canonical log-Calabi Yau varieties with "large" boundary, where the specific meanings of "large" are originated from some notion of "charges" from String theory, and hence is related to Mirror Symmetry. This part of works also answered a Conjecture due to Prof. Shokurov.
Shifler, Ryan M. „Computational Algebraic Geometry Applied to Invariant Theory“. Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23154.
Der volle Inhalt der QuelleMaster of Science
Massarenti, Alex. „Biregular and Birational Geometry of Algebraic Varieties“. Doctoral thesis, SISSA, 2013. http://hdl.handle.net/20.500.11767/4679.
Der volle Inhalt der QuelleRedman, Lynn. „Algebraic Methods for Proving Geometric Theorems“. CSUSB ScholarWorks, 2019. https://scholarworks.lib.csusb.edu/etd/923.
Der volle Inhalt der QuelleHammes, Emily. „Unifications of Pythagorean Triple Schema“. Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/honors/502.
Der volle Inhalt der QuelleMiadantsoa, Rakoto. „Groupes finis d'automorphismes des varietes abeliennes de dimension deux“. Toulouse 3, 1988. http://www.theses.fr/1988TOU30051.
Der volle Inhalt der QuelleMOUSSA, OUSMANE. „Theoremes des zeros centraux en geometrie analytique reelle“. Rennes 1, 1989. http://www.theses.fr/1989REN10062.
Der volle Inhalt der QuelleLe, Stum Bernard. „Cohomologie rigide et varietes abeliennes“. Rennes 1, 1985. http://www.theses.fr/1985REN10007.
Der volle Inhalt der QuelleJadda, Zoubida. „Constructions de places reelles et geometrie semi-algebrique“. Rennes 1, 1986. http://www.theses.fr/1986REN10102.
Der volle Inhalt der QuelleFekak, Azzeddine. „Sur les exposants de Lojasiewicz“. Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37597565q.
Der volle Inhalt der QuelleDeshpande, D. V. „Topological methods in algebraic geometry : cohomology rings, algebraic cobordism and higher Chow groups“. Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598515.
Der volle Inhalt der QuelleGong, Shengjun, und 龔勝軍. „Linear coordinates, test elements, retracts and automorphic orbits“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40988065.
Der volle Inhalt der QuelleGong, Shengjun. „Linear coordinates, test elements, retracts and automorphic orbits“. Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B40988065.
Der volle Inhalt der QuelleNyman, Adam. „The geometry of points on quantum projectivizations /“. Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/5727.
Der volle Inhalt der QuelleAbbott, Kevin Toney. „Applications of algebraic geometry to object/image recognition“. [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1935.
Der volle Inhalt der QuelleDindyal, Jaguthsing Presmeg Norma C. „Algebraic thinking in geometry at high school level“. Normal, Ill. Illinois State University, 2003. http://wwwlib.umi.com/cr/ilstu/fullcit?p3087865.
Der volle Inhalt der QuelleTitle from title page screen, viewed November 15, 2005. Dissertation Committee: Norma C. Presmeg (chair), Nerida F. Ellerton, Beverly S. Rich, Sharon S. McCrone. Includes bibliographical references (leaves 208-219) and abstract. Also available in print.
Hampton, III Earl Ravi M. „A PRIMER FOR THE FOUNDATIONS OF ALGEBRAIC GEOMETRY“. [Greenville, N.C.] : East Carolina University, 2010. http://hdl.handle.net/10342/2797.
Der volle Inhalt der QuelleTang, Xin. „Applications of noncommutative algebraic geometry to representation theory /“. Search for this dissertation online, 2006. http://wwwlib.umi.com/cr/ksu/main.
Der volle Inhalt der QuelleJost, Christine. „Topics in Computational Algebraic Geometry and Deformation Quantization“. Doctoral thesis, Stockholms universitet, Matematiska institutionen, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-87399.
Der volle Inhalt der QuelleAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 4: Accepted.
Riccomagno, Eva M. „Algebraic geometry in experimental design and related fields“. Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263314.
Der volle Inhalt der QuelleDi, Natale Carmelo. „Grassmannians and period mappings in derived algebraic geometry“. Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709191.
Der volle Inhalt der QuelleAnderson, William Erik 1976. „Applications of algebraic geometry to coding & cryptography“. Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/86656.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 73-74).
by William Erik Anderson.
S.M.
Abou-Rached, John. „Sheaves and schemes: an introduction to algebraic geometry“. Kansas State University, 2016. http://hdl.handle.net/2097/32608.
Der volle Inhalt der QuelleDepartment of Mathematics
Roman Fedorov
The purpose of this report is to serve as an introduction to the language of sheaves and schemes via algebraic geometry. The main objective is to use examples from algebraic geometry to motivate the utility of the perspective from sheaf and scheme theory. Basic facts and definitions will be provided, and a categorical approach will be frequently incorporated when appropriate.
Berardini, Elena. „Algebraic geometry codes from surfaces over finite fields“. Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0170.
Der volle Inhalt der QuelleIn this thesis we provide a theoretical study of algebraic geometry codes from surfaces defined over finite fields. We prove lower bounds for the minimum distance of codes over surfaces whose canonical divisor is either nef or anti-strictly nef and over surfaces without irreducible curves of small genus. We sharpen these lower bounds for surfaces whose arithmetic Picard number equals one, surfaces without curves with small self-intersection and fibered surfaces. Then we apply these bounds to surfaces embedded in P3. A special attention is given to codes constructed from abelian surfaces. In this context we give a general bound on the minimum distance and we prove that this estimation can be sharpened under the assumption that the abelian surface does not contain absolutely irreducible curves of small genus. In this perspective we characterize all abelian surfaces which do not contain absolutely irreducible curves of genus up to 2. This approach naturally leads us to consider Weil restrictions of elliptic curves and abelian surfaces which do not admit a principal polarization
Drake, Nathan. „Decoding of multipoint algebraic geometry codes via lists“. Connect to this title online, 2009. http://etd.lib.clemson.edu/documents/1263409538/.
Der volle Inhalt der Quelle