Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Geometry“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Geometry" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Geometry"
Yasbiati, Yasbiati, und Titi Nurhayati. „PENINGKATAN KEMAMPUAN MENGENAL BENTUK GEOMTETRI MELALUI MEDIA COLOUR GEOMETRY BOOK (Penelitian Tindakan Kelas pada Kelompok A TK Al-Abror Kecamatan Mangkubumi Kota Tasikmalaya Tahun 2016/2017)“. JURNAL PAUD AGAPEDIA 2, Nr. 1 (02.05.2020): 23–35. http://dx.doi.org/10.17509/jpa.v2i1.24385.
Der volle Inhalt der QuellePuspananda, Dian Ratna, Anis Umi Khoirutunnisa’, M. Zainudin, Anita Dewi Utami und Nur Rohman. „GEOMETRY TOWER ADVENTURE PADA ANAK USIA DINI DI DESA SUKOREJO KECAMATAN BOJONEGORO“. J-ABDIPAMAS : Jurnal Pengabdian Kepada Masyarakat 1, Nr. 1 (20.10.2017): 56. http://dx.doi.org/10.30734/j-abdipamas.v1i1.81.
Der volle Inhalt der QuelleClements, Douglas C., und Michael Battista. „Geometry and Geometric Measurement“. Arithmetic Teacher 33, Nr. 6 (Februar 1986): 29–32. http://dx.doi.org/10.5951/at.33.6.0029.
Der volle Inhalt der QuelleRylov, Yuri A. „Geometry without topology as a new conception of geometry“. International Journal of Mathematics and Mathematical Sciences 30, Nr. 12 (2002): 733–60. http://dx.doi.org/10.1155/s0161171202012243.
Der volle Inhalt der QuelleNingrum, Mallevi Agustin, und Lailatul Asmaul Chusna. „INOVASI DAKON GEOMETRI DALAM MENSTIMULASI KEMAMPUAN MENGENAL BENTUK GEOMETRI ANAK USIA DINI“. Kwangsan: Jurnal Teknologi Pendidikan 8, Nr. 1 (05.08.2020): 18. http://dx.doi.org/10.31800/jtp.kw.v8n1.p18--32.
Der volle Inhalt der QuelleMisni, Misni, und Ferry Ferdianto. „Analisis Kesalahan dalam Menyelesaikan Soal Geometri Siswa Kelas XI SMK Bina Warga Lemahabang“. Jurnal Fourier 8, Nr. 2 (31.10.2019): 73–78. http://dx.doi.org/10.14421/fourier.2019.82.73-78.
Der volle Inhalt der QuelleKaldor, S., und P. K. Venuvinod. „Macro-level Optimization of Cutting Tool Geometry“. Journal of Manufacturing Science and Engineering 119, Nr. 1 (01.02.1997): 1–9. http://dx.doi.org/10.1115/1.2836551.
Der volle Inhalt der QuelleMoretti, Méricles Thadeu, und Adalberto Cans. „Releitura das Apreensões em Geometria e a Ideia de Expansão Figural a Partir dos Estudos de Raymond Duval“. Jornal Internacional de Estudos em Educação Matemática 16, Nr. 3 (26.02.2024): 303–10. http://dx.doi.org/10.17921/2176-5634.2023v16n3p303-310.
Der volle Inhalt der QuelleJesus, Josenilton Santos de, und Elias Santiago de Assis. „Aprendizagem de Geometria Esférica Por Meio do Geogebra“. Jornal Internacional de Estudos em Educação Matemática 16, Nr. 3 (26.02.2024): 353–62. http://dx.doi.org/10.17921/2176-5634.2023v16n3p353-362.
Der volle Inhalt der QuelleLarke, Patricia J. „Geometric Extravaganza: Spicing Up Geometry“. Arithmetic Teacher 36, Nr. 1 (September 1988): 12–16. http://dx.doi.org/10.5951/at.36.1.0012.
Der volle Inhalt der QuelleDissertationen zum Thema "Geometry"
Jadhav, Rajesh. „Geometric Routing Without Geometry“. Kent State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=kent1178080572.
Der volle Inhalt der QuelleFléchelles, Balthazar. „Geometric finiteness in convex projective geometry“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.
Der volle Inhalt der QuelleThis thesis is devoted to the study of geometrically finite convex projective orbifolds, following work of Ballas, Cooper, Crampon, Leitner, Long, Marquis and Tillmann. A convex projective orbifold is the quotient of a bounded, convex and open subset of an affine chart of real projective space (called a properly convex domain) by a discrete group of projective transformations that preserve it. We say that a convex projective orbifold is strictly convex if there are no non-trivial segments in the boundary of the convex subset, and round if in addition there is a unique supporting hyperplane at each boundary point. Following work of Cooper-Long-Tillmann and Crampon-Marquis, we say that a strictly convex orbifold is geometrically finite if its convex core decomposes as the union of a compact subset and of finitely many ends, called cusps, all of whose points have an injectivity radius smaller than a constant depending only on the dimension. Understanding what types of cusps may occur is crucial for the study of geometrically finite orbifolds. In the strictly convex case, the only known restriction on cusp holonomies, imposed by a generalization of the celebrated Margulis lemma proven by Cooper-Long-Tillmann and Crampon-Marquis, is that the holonomy of a cusp has to be virtually nilpotent. We give a complete characterization of the holonomies of cusps of strictly convex orbifolds and of those of round orbifolds. By generalizing a method of Cooper, which gave the only previously known example of a cusp of a strictly convex manifold with non virtually abelian holonomy, we build examples of cusps of strictly convex manifolds and round manifolds whose holonomy can be any finitely generated torsion-free nilpotent group. In joint work with M. Islam and F. Zhu, we also prove that for torsion-free relatively hyperbolic groups, relative P1-Anosov representations (in the sense of Kapovich-Leeb, Zhu and Zhu-Zimmer) that preserve a properly convex domain are exactly the holonomies of geometrically finite round manifolds.In the general case of non strictly convex projective orbifolds, no satisfactory definition of geometric finiteness is known at the moment. However, Cooper-Long-Tillmann, followed by Ballas-Cooper-Leitner, introduced a notion of generalized cusps in this context. Although they only require that the holonomy be virtually nilpotent, all previously known examples had virtually abelian holonomy. We build examples of generalized cusps whose holonomy can be any finitely generated torsion-free nilpotent group. We also allow ourselves to weaken Cooper-Long-Tillmann’s original definition by assuming only that the holonomy be virtually solvable, and this enables us to construct new examples whose holonomy is not virtually nilpotent.When a geometrically finite orbifold has no cusps, i.e. when its convex core is compact, we say that the orbifold is convex cocompact. Danciger-Guéritaud-Kassel provided a good definition of convex cocompactness for convex projective orbifolds that are not necessarily strictly convex. They proved that the holonomy of a convex cocompact convex projective orbifold is Gromov hyperbolic if and only if the associated representation is P1-Anosov. Using these results, Vinberg’s theory and work of Agol and Haglund-Wise about cubulated hyperbolic groups, we construct, in collaboration with S. Douba, T. Weisman and F. Zhu, examples of P1-Anosov representations for any cubulated hyperbolic group. This gives new examples of hyperbolic groups admitting Anosov representations
Scott, Phil. „Ordered geometry in Hilbert's Grundlagen der Geometrie“. Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/15948.
Der volle Inhalt der QuelleLiu, Yang, und 劉洋. „Optimization and differential geometry for geometric modeling“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40988077.
Der volle Inhalt der QuelleGreene, Michael Thomas. „Some results in geometric topology and geometry“. Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397717.
Der volle Inhalt der QuelleLiu, Yang. „Optimization and differential geometry for geometric modeling“. Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B40988077.
Der volle Inhalt der QuelleHidalgo, García Marta R. „Geometric constraint solving in a dynamic geometry framework“. Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134690.
Der volle Inhalt der QuelleChuang, Wu-yen. „Geometric transitions, topological strings, and generalized complex geometry /“. May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Der volle Inhalt der QuelleVilla, E. „Methods of geometric measure theory in stochastic geometry“. Doctoral thesis, Università degli Studi di Milano, 2007. http://hdl.handle.net/2434/28369.
Der volle Inhalt der QuellePersson, Aron. „On the Existence of Electrodynamics on Manifold-like Polyfolds“. Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-155488.
Der volle Inhalt der QuelleDen här uppsatsen betraktar huruvida klassisk elektrodynamik kan generaliseras till en rumtid som lokalt byter dimension samt om detta är matematiskt möjligt. Nyligen har forskningen utvecklat en generalisering av släta mångfalder, så kallade M-polyfolds, vilka ger oss en tillräcklig grund för att göra detta till en fysikalisk möjlighet. Dessa M-polyfolds möjliggör förmågan att definiera hastigheten av en kurva som går igenom en dimensionellt varierande rumtid. Därutöver utvecklas vissa nödvändiga förlängningar av teorin om M-polyfolds, detta för att skräddarsy teorin till ett mer fysikaliskt ramverk. Därefefter avslutas uppsatsen genom att definiera Maxwells ekvationer på M-polyfolds.
Bücher zum Thema "Geometry"
Sal'kov, Nikolay. Geometry in education and science. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1158751.
Der volle Inhalt der QuelleCollezione Maramotti (Gallery : Reggio Emilia, Italy), Hrsg. Geometria figurativa: Figurative geometry. Cinisello Balsamo, Milano: Silvana editoriale, 2017.
Den vollen Inhalt der Quelle findenPedoe, Daniel. Geometry: A comprehensive course. New York: Dover, 1988.
Den vollen Inhalt der Quelle findenPedoe, Daniel. Geometry, a comprehensive course. New York: Dover Publications, 1988.
Den vollen Inhalt der Quelle findenJost, Jürgen. Riemannian geometry and geometric analysis. 3. Aufl. New York: Springer, 2002.
Den vollen Inhalt der Quelle findenW, Henderson David. Differential geometry: A geometric introduction. Upper Saddle River, N.J: Prentice Hall, 1998.
Den vollen Inhalt der Quelle findenQuinto, Eric, Fulton Gonzalez und Jens Christensen, Hrsg. Geometric Analysis and Integral Geometry. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/conm/598.
Der volle Inhalt der QuelleJost, Jürgen. Riemannian Geometry and Geometric Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03118-6.
Der volle Inhalt der QuelleJost, Jürgen. Riemannian Geometry and Geometric Analysis. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61860-9.
Der volle Inhalt der QuelleElkadi, Mohamed, Bernard Mourrain und Ragni Piene, Hrsg. Algebraic Geometry and Geometric Modeling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33275-6.
Der volle Inhalt der QuelleBuchteile zum Thema "Geometry"
Pütz, Ralph, und Ton Serné. „Geometrie Geometry“. In Rennwagentechnik - Praxislehrgang Fahrdynamik, 105–41. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-16102-6_5.
Der volle Inhalt der QuellePütz, Ralph, und Ton Serné. „Geometrie Geometry“. In Rennwagentechnik - Praxislehrgang Fahrdynamik, 127–69. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-26704-9_5.
Der volle Inhalt der QuelleVince, John. „Geometry Using Geometric Algebra“. In Imaginary Mathematics for Computer Science, 229–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94637-5_10.
Der volle Inhalt der QuelleWattenhofer, Mirjam, Roger Wattenhofer und Peter Widmayer. „Geometric Routing Without Geometry“. In Structural Information and Communication Complexity, 307–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11429647_24.
Der volle Inhalt der QuelleWu, Wen-tsün. „Orthogonal geometry, metric geometry and ordinary geometry“. In Mechanical Theorem Proving in Geometries, 63–113. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-6639-0_3.
Der volle Inhalt der QuelleJost, Jürgen. „Geometry“. In Geometry and Physics, 1–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00541-1_1.
Der volle Inhalt der QuelleStillwell, John. „Geometry“. In Numbers and Geometry, 37–67. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0687-3_2.
Der volle Inhalt der QuelleBronshtein, Ilja N., Konstantin A. Semendyayev, Gerhard Musiol und Heiner Muehlig. „Geometry“. In Handbook of Mathematics, 128–250. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05382-9_3.
Der volle Inhalt der QuelleBronshtein, I. N., K. A. Semendyayev, Gerhard Musiol und Heiner Mühlig. „Geometry“. In Handbook of Mathematics, 129–268. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46221-8_3.
Der volle Inhalt der QuelleHurlbert, Glenn H. „Geometry“. In Undergraduate Texts in Mathematics, 59–72. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-79148-7_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Geometry"
Qing, Ni, und Wang Zhengzhi. „Geometric invariants using geometry algebra“. In 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering (CCIE 2011). IEEE, 2011. http://dx.doi.org/10.1109/ccieng.2011.6008094.
Der volle Inhalt der QuelleCaticha, Ariel. „Geometry from information geometry“. In TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES. Author(s), 2016. http://dx.doi.org/10.1063/1.4959050.
Der volle Inhalt der QuelleIvic, Aleksandar. „Number of digital convex polygons inscribed into an (m,m)-grid“. In Vision Geometry II. SPIE, 1993. http://dx.doi.org/10.1117/12.165003.
Der volle Inhalt der QuelleAllili, Madjid. „A deformable model with topology analysis and adaptive clustering for boundary detection“. In Vision Geometry XIV. SPIE, 2006. http://dx.doi.org/10.1117/12.642353.
Der volle Inhalt der QuelleNguyen, Hung, Rolf Clackdoyle und Laurent Desbat. „Automatic geometric calibration in 3D parallel geometry“. In Physics of Medical Imaging, herausgegeben von Hilde Bosmans und Guang-Hong Chen. SPIE, 2020. http://dx.doi.org/10.1117/12.2549568.
Der volle Inhalt der QuellePlauschinn, Erik. „Non-geometric fluxes and non-associative geometry“. In Proceedings of the Corfu Summer Institute 2011. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.155.0061.
Der volle Inhalt der QuelleLima, Guilherme. „In-memory Geometry Converter“. In In-memory Geometry Converter. US DOE, 2023. http://dx.doi.org/10.2172/2204991.
Der volle Inhalt der QuelleFernández, M., A. Tomassini, L. Ugarte, R. Villacampa, Fernando Etayo, Mario Fioravanti und Rafael Santamaría. „On Special Hermitian Geometry“. In GEOMETRY AND PHYSICS: XVII International Fall Workshop on Geometry and Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3146230.
Der volle Inhalt der QuelleSzabo, Richard. „Higher Quantum Geometry and Non-Geometric String Theory“. In Corfu Summer Institute 2017 "Schools and Workshops on Elementary Particle Physics and Gravity". Trieste, Italy: Sissa Medialab, 2018. http://dx.doi.org/10.22323/1.318.0151.
Der volle Inhalt der QuelleLai, Y. K., S. M. Hu, D. X. Gu und R. R. Martin. „Geometric texture synthesis and transfer via geometry images“. In the 2005 ACM symposium. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1060244.1060248.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Geometry"
Chuang, Wu-yen, und /SLAC /Stanford U., Phys. Dept. Geometric Transitions, Topological Strings, and Generalized Complex Geometry. Office of Scientific and Technical Information (OSTI), Juni 2007. http://dx.doi.org/10.2172/909289.
Der volle Inhalt der QuelleHeath, Daniel, und Joshua Jacobs. Geometry Playground. Washington, DC: The MAA Mathematical Sciences Digital Library, November 2010. http://dx.doi.org/10.4169/loci003567.
Der volle Inhalt der QuelleFoster, Karis. Exposed Geometry. Ames: Iowa State University, Digital Repository, 2014. http://dx.doi.org/10.31274/itaa_proceedings-180814-975.
Der volle Inhalt der QuelleUngar, Abraham A. Hyperbolic Geometry. GIQ, 2014. http://dx.doi.org/10.7546/giq-15-2014-259-282.
Der volle Inhalt der QuelleUngar, Abraham A. Hyperbolic Geometry. Jgsp, 2013. http://dx.doi.org/10.7546/jgsp-32-2013-61-86.
Der volle Inhalt der QuelleEarnshaw, Connie. Overgrown geometry. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.5380.
Der volle Inhalt der QuelleButler, Lee A., und Clifford Yapp. Adaptive Geometry Shader Tessellation for Massive Geometry Display. Fort Belvoir, VA: Defense Technical Information Center, März 2015. http://dx.doi.org/10.21236/ada616646.
Der volle Inhalt der QuelleHansen, Mark D. Results in Computational Geometry: Geometric Embeddings and Query- Retrieval Problems. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada230380.
Der volle Inhalt der QuelleCONCEPT ANALYSIS CORP PLYMOUTH MI. Missile Geometry Package. Fort Belvoir, VA: Defense Technical Information Center, März 1989. http://dx.doi.org/10.21236/ada253181.
Der volle Inhalt der QuelleZhanchun Tu, Zhanchun Tu. Geometry of Membranes. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-24-2011-45-75.
Der volle Inhalt der Quelle