Zeitschriftenartikel zum Thema „Geometric statistics“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Geometric statistics.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Geometric statistics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Berry, M. V., und Pragya Shukla. „Geometric Phase Curvature Statistics“. Journal of Statistical Physics 180, Nr. 1-6 (09.10.2019): 297–303. http://dx.doi.org/10.1007/s10955-019-02400-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Constantin, Peter. „Geometric Statistics in Turbulence“. SIAM Review 36, Nr. 1 (März 1994): 73–98. http://dx.doi.org/10.1137/1036004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Drew, Donald A. „Evolution of Geometric Statistics“. SIAM Journal on Applied Mathematics 50, Nr. 3 (Juni 1990): 649–66. http://dx.doi.org/10.1137/0150038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Grady, D. E., und M. E. Kipp. „Geometric statistics and dynamic fragmentation“. Journal of Applied Physics 58, Nr. 3 (August 1985): 1210–22. http://dx.doi.org/10.1063/1.336139.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Timonin, P. N. „Statistics of geometric clusters in Potts model: statistical mechanics approach“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, Nr. 2240 (August 2020): 20200215. http://dx.doi.org/10.1098/rspa.2020.0215.

Der volle Inhalt der Quelle
Annotation:
The percolation of Potts spins with equal values in Potts model on graphs (networks) is considered. The general method for finding the Potts clusters' size distributions is developed. It allows full description of percolation transition when a giant cluster of equal-valued Potts spins appears. The method is applied to the short-ranged q-state ferromagnetic Potts model on the Bethe lattices with the arbitrary coordination number z . The analytical results for the field-temperature percolation phase diagram of geometric spin clusters and their size distribution are obtained. The last appears to be proportional to that of the classical non-correlated bond percolation with the bond probability, which depends on temperature and Potts model parameters.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Trofimov, V. K. „Encoding geometric sources with unknown statistics“. Herald of the Siberian State University of Telecommunications and Informatics, Nr. 2 (18.06.2021): 79–87. http://dx.doi.org/10.55648/1998-6920-2021-15-2-79-87.

Der volle Inhalt der Quelle
Annotation:
Universal encoding method of an arbitrary set of sources without memory generating letters of an infinite alphabet is proposed. The probabilities of the input alphabet letter appearance are a geometric progression. The proposed method is weakly universal for the set of all geometric sources. If the denominator of the geometric progression exceeds δ, δ > 0, the proposed encoding is universal. Redundancy estimates are obtained for an arbitrary subset of geometric sources.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Anevski, Dragi, Christopher Genovese, Geurt Jongbloed und Wolfgang Polonik. „Statistics for Shape and Geometric Features“. Oberwolfach Reports 13, Nr. 3 (2016): 1821–74. http://dx.doi.org/10.4171/owr/2016/32.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Feragen, Aasa, Thomas Hotz, Stephan Huckemann und Ezra Miller. „Statistics for Data with Geometric Structure“. Oberwolfach Reports 15, Nr. 1 (04.01.2019): 125–86. http://dx.doi.org/10.4171/owr/2018/3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

ANASTOPOULOS, CHARIS. „SPIN-STATISTICS THEOREM AND GEOMETRIC QUANTIZATION“. International Journal of Modern Physics A 19, Nr. 05 (20.02.2004): 655–76. http://dx.doi.org/10.1142/s0217751x04017860.

Der volle Inhalt der Quelle
Annotation:
We study the relation of the spin-statistics theorem to the geometric structures on phase space, which are introduced in quantization procedures (namely a U(1) bundle and connection). The relation can be proved in both the relativistic and the nonrelativistic domain (in fact for any symmetry group including internal symmetries) by requiring that the exchange can be implemented smoothly by a class of symmetry transformations that project in the phase space of the joint system system. We discuss the interpretation of this requirement, stressing the fact that any distinction of identical particles comes solely from the choice of coordinates — the exchange then arises from suitable change of coordinate system. We then examine our construction in the geometric and the coherent-state-path-integral quantization schemes. In the appendix we apply our results to exotic systems exhibiting continuous "spin" and "fractional statistics." This gives novel and unusual forms of the spin-statistics relation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Dettmann, C. P., O. Georgiou und G. Knight. „Spectral statistics of random geometric graphs“. EPL (Europhysics Letters) 118, Nr. 1 (01.04.2017): 18003. http://dx.doi.org/10.1209/0295-5075/118/18003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Fan, Jianqing, Hui-Nien Hung und Wing-Hung Wong. „Geometric Understanding of Likelihood Ratio Statistics“. Journal of the American Statistical Association 95, Nr. 451 (September 2000): 836–41. http://dx.doi.org/10.1080/01621459.2000.10474275.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Chakraborty, Subrata, und Rameshwar D. Gupta. „Exponentiated Geometric Distribution: Another Generalization of Geometric Distribution“. Communications in Statistics - Theory and Methods 44, Nr. 6 (17.05.2013): 1143–57. http://dx.doi.org/10.1080/03610926.2012.763090.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Matsen, Frederick A. „A Geometric Approach to Tree Shape Statistics“. Systematic Biology 55, Nr. 4 (01.08.2006): 652–61. http://dx.doi.org/10.1080/10635150600889617.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Plotkin, B. I. „Geometric equivalence, geometric similarity, and geometric compatibility of algebras“. Journal of Mathematical Sciences 140, Nr. 5 (Februar 2007): 716–28. http://dx.doi.org/10.1007/s10958-007-0011-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Yang, Aijun, Hui Yu und Zhenhai Yang. „The MLE of Geometric Parameter for a Geometric Process“. Communications in Statistics - Theory and Methods 35, Nr. 10 (Oktober 2006): 1921–30. http://dx.doi.org/10.1080/03610920600728609.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Neill, James W., David J. Saville und Graham R. Wood. „Statistical Methods: A Geometric Primer.“ Journal of the American Statistical Association 92, Nr. 440 (Dezember 1997): 1652. http://dx.doi.org/10.2307/2965450.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Davy, P. J., und J. C. W. Rayner. „Multivariate geometric distributions“. Communications in Statistics - Theory and Methods 25, Nr. 12 (Januar 1996): 2971–87. http://dx.doi.org/10.1080/03610929608831881.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Neill, James W., David J. Saville und Graham R. Wood. „Statistical Methods: The Geometric Approach“. American Statistician 47, Nr. 3 (August 1993): 234. http://dx.doi.org/10.2307/2684984.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Rising, William. „Geometric Markov chains“. Journal of Applied Probability 32, Nr. 2 (Juni 1995): 349–74. http://dx.doi.org/10.2307/3215293.

Der volle Inhalt der Quelle
Annotation:
A generalization of the familiar birth–death chain, called the geometric chain, is introduced and explored. By the introduction of two families of parameters in addition to the infinitesimal birth and death rates, the geometric chain allows transitions beyond the nearest neighbor, but is shown to retain the simple computational formulas of the birth–death chain for the stationary distribution and the expected first-passage times between states. It is also demonstrated that even when not reversible, a reversed geometric chain is again a geometric chain.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Hörfelt, Per. „Geometric bounds on certain sublinear functionals of geometric Brownian motion“. Journal of Applied Probability 40, Nr. 4 (September 2003): 893–905. http://dx.doi.org/10.1239/jap/1067436089.

Der volle Inhalt der Quelle
Annotation:
Suppose that {Xs, 0 ≤ s ≤ T} is an m-dimensional geometric Brownian motion with drift, μ is a bounded positive Borel measure on [0,T], and ϕ : ℝm → [0,∞) is a (weighted) lq(ℝm)-norm, 1 ≤ q ≤ ∞. The purpose of this paper is to study the distribution and the moments of the random variable Y given by the Lp(μ)-norm, 1 ≤ p ≤ ∞, of the function s ↦ ϕ(Xs), 0 ≤ s ≤ T. By using various geometric inequalities in Wiener space, this paper gives upper and lower bounds for the distribution function of Y and proves that the distribution function is log-concave and absolutely continuous on every open subset of the distribution's support. Moreover, the paper derives tail probabilities, presents sharp moment inequalities, and shows that Y is indetermined by its moments. The paper will also discuss the so-called moment-matching method for the pricing of Asian-styled basket options.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Molchanov, Stanislav A. „Book Review: Geometric modeling in probability and statistics“. Bulletin of the American Mathematical Society 55, Nr. 1 (26.05.2017): 109–11. http://dx.doi.org/10.1090/bull/1582.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Ohkubo, Jun, und Thomas Eggel. „Noncyclic and nonadiabatic geometric phase for counting statistics“. Journal of Physics A: Mathematical and Theoretical 43, Nr. 42 (30.09.2010): 425001. http://dx.doi.org/10.1088/1751-8113/43/42/425001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Herla, Florian, Gerard H. Roe und Ben Marzeion. „Ensemble statistics of a geometric glacier length model“. Annals of Glaciology 58, Nr. 75pt2 (Juli 2017): 130–35. http://dx.doi.org/10.1017/aog.2017.15.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT A third-order linear glacier length model is used to analyze if the retreat of Hintereisferner in the Austrian Alps over the past 160 years is exceptional, or lies within the range of the natural variability inherent to a stationary climate. A detailed uncertainty analysis takes into account glacier geometry, model parameters and initial conditions. A Monte Carlo ensemble strengthens the result that the observed retreat cannot be explained by natural variability and therefore affirms regional climate change. Finally the observed temperature trend at Hintereisferner lies outside the range of natural variability from an ensemble of climate models, but is consistent with the modeled range of responses to anthropogenic forcing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Ganapathi, Iyyakutti Iyappan, Syed Sadaf Ali und Surya Prakash. „Geometric statistics-based descriptor for 3D ear recognition“. Visual Computer 36, Nr. 1 (10.09.2018): 161–73. http://dx.doi.org/10.1007/s00371-018-1593-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Bandyopadhyay, P. „The geometric phase and the spin-statistics relation“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, Nr. 2122 (05.05.2010): 2917–32. http://dx.doi.org/10.1098/rspa.2010.0042.

Der volle Inhalt der Quelle
Annotation:
The exchange phase for two spins is studied here from the point of view of the quantization of a fermion in the framework of Nelson’s stochastic mechanics. This introduces a direction vector attached to a space–time point depicting the spin degrees of freedom. In this formalism, a fermion appears as a scalar particle attached with a magnetic-flux quantum, and a quantum spin can be described in terms of an SU(2) gauge bundle. This helps us to recast the Berry–Robbins formalism where the exchange phase appears as an unfamiliar geometric phase arising out of the ‘exchange rotation’ in a transported spin basis in terms of gauge currents. However, for polarized fermions, the exchange phase is found to be given by the Berry phase.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Zhao, Peng, und Feng Su. „On maximum order statistics from heterogeneous geometric variables“. Annals of Operations Research 212, Nr. 1 (22.05.2012): 215–23. http://dx.doi.org/10.1007/s10479-012-1158-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Sathar, E. I. Abdul, und Veena L. Vijayan. „Quantile Based Geometric Vitality Function of Order Statistics“. Mathematical Methods of Statistics 32, Nr. 1 (März 2023): 88–101. http://dx.doi.org/10.3103/s1066530723010040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Heikkilä, Matias. „Nonparametric geometric outlier detection“. Scandinavian Journal of Statistics 46, Nr. 4 (04.06.2019): 1300–1314. http://dx.doi.org/10.1111/sjos.12399.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Chernyak, V. Y., M. Chertkov und N. A. Sinitsyn. „The geometric universality of currents“. Journal of Statistical Mechanics: Theory and Experiment 2011, Nr. 09 (14.09.2011): P09006. http://dx.doi.org/10.1088/1742-5468/2011/09/p09006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Tyurin, Yu N. „Multivariate Statistical Analysis: The Geometric Theory“. Theory of Probability & Its Applications 55, Nr. 1 (Januar 2011): 91–109. http://dx.doi.org/10.1137/s0040585x97984620.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Pulkin, I. S., und A. V. Tatarintsev. „Sufficient statistics for the Pareto distribution parameter“. Russian Technological Journal 9, Nr. 3 (28.06.2021): 88–97. http://dx.doi.org/10.32362/2500-316x-2021-9-3-88-97.

Der volle Inhalt der Quelle
Annotation:
The task of estimating the parameters of the Pareto distribution, first of all, of an indicator of this distribution for a given sample, is relevant. This article establishes that for this estimate, it is sufficient to know the product of the sample elements. It is proved that this product is a sufficient statistic for the Pareto distribution parameter. On the basis of the maximum likelihood method the distribution degree indicator is estimated. It is proved that this estimate is biased, and a formula eliminating the bias is justified. For the product of the sample elements considered as a random variable the distribution function and probability density are found; mathematical expectation, higher moments, and differential entropy are calculated. The corresponding graphs are built. In addition, it is noted that any function of this product is a sufficient statistic, in particular, the geometric mean. For the geometric mean also considered as a random variable, the distribution function, probability density, and the mathematical expectation are found; the higher moments, and the differential entropy are also calculated, and the corresponding graphs are plotted. In addition, it is proved that the geometric mean of the sample is a more convenient sufficient statistic from a practical point of view than the product of the sample elements. Also, on the basis of the Rao–Blackwell–Kolmogorov theorem, effective estimates of the Pareto distribution parameter are constructed. In conclusion, as an example, the technique developed here is applied to the exponential distribution. In this case, both the sum and the arithmetic mean of the sample can be used as sufficient statistics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Mao, Tiantian, und Taizhong Hu. „EQUIVALENT CHARACTERIZATIONS ON ORDERINGS OF ORDER STATISTICS AND SAMPLE RANGES“. Probability in the Engineering and Informational Sciences 24, Nr. 2 (18.03.2010): 245–62. http://dx.doi.org/10.1017/s0269964809990258.

Der volle Inhalt der Quelle
Annotation:
The purpose of this article is to present several equivalent characterizations of comparing the largest-order statistics and sample ranges of two sets of n independent exponential random variables with respect to different stochastic orders, where the random variables in one set are heterogeneous and the random variables in the other set are identically distributed. The main results complement and extend several known results in the literature. The geometric distribution can be regarded as the discrete counterpart of the exponential distribution. We also study the orderings of the largest-order statistics from geometric random variables and point out similarities and differences between orderings of the largest-order statistics from geometric variables and from exponential variables.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Kozubowski, Tomasz J., Mark M. Meerschaert, Anna K. Panorska und Hans-Peter Scheffler. „Operator geometric stable laws“. Journal of Multivariate Analysis 92, Nr. 2 (Februar 2005): 298–323. http://dx.doi.org/10.1016/j.jmva.2003.09.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Arciosa, Ramil M. „Cultural Statistics: Behind The Weaving Designs of T’nalak Tapestry“. International Journal of Multidisciplinary: Applied Business and Education Research 5, Nr. 4 (24.04.2024): 1423–33. http://dx.doi.org/10.11594/ijmaber.05.04.27.

Der volle Inhalt der Quelle
Annotation:
This research describes the multidisciplinary approach in between culture and mathematics/ science concepts, bounded with the different ethno modelling approaches. Like ethno modelling in math-ethno mathematics and physics-ethno physics The static value of the every IPs crafts man, evolve the statistical geometric patterns like the crystallize and geometric weaving designs, volume, areas and its skeletal designs most particularly in the geometric designs of some T’nalak handloom tapestry. When the artistic mind works, dynamism of neurons particles create a weaving designs and patterns with frequencies of wavelength that pointing in a symmetrical and elliptical rays of designs down to his affective and psychomotor of every T’nalak weavers, that’s include that application of cultural statistics. The cultural statistics based on the image processing analysis based on amplitude, wavelength and string theory in perfections of the unique designs of T’nalak weaving patterns.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Vakil, Ravi. „A geometric Littlewood–Richardson rule“. Annals of Mathematics 164, Nr. 2 (01.09.2006): 371–422. http://dx.doi.org/10.4007/annals.2006.164.371.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

McCartin, Brian J. „Geometric characterization of planar regression“. Statistics 40, Nr. 3 (Juni 2006): 187–206. http://dx.doi.org/10.1080/02331880600665088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Cordeiro, Gauss M., Giovana O. Silva und Edwin M. M. Ortega. „The beta-Weibull geometric distribution“. Statistics 47, Nr. 4 (August 2013): 817–34. http://dx.doi.org/10.1080/02331888.2011.577897.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Kundu, Debasis. „Multivariate geometric skew-normal distribution“. Statistics 51, Nr. 6 (01.08.2017): 1377–97. http://dx.doi.org/10.1080/02331888.2017.1355369.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Dembińska, Anna. „kth records from geometric distribution“. Statistics & Probability Letters 78, Nr. 12 (September 2008): 1662–70. http://dx.doi.org/10.1016/j.spl.2008.01.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Nadarajah, Saralees, Vicente G. Cancho und Edwin M. M. Ortega. „The geometric exponential Poisson distribution“. Statistical Methods & Applications 22, Nr. 3 (09.05.2013): 355–80. http://dx.doi.org/10.1007/s10260-013-0230-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Kendall, Wilfrid. „Geometric Ergodicity and Perfect Simulation“. Electronic Communications in Probability 9 (2004): 140–51. http://dx.doi.org/10.1214/ecp.v9-1117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Lunagómez, Simón, Sayan Mukherjee, Robert L. Wolpert und Edoardo M. Airoldi. „Geometric Representations of Random Hypergraphs“. Journal of the American Statistical Association 112, Nr. 517 (02.01.2017): 363–83. http://dx.doi.org/10.1080/01621459.2016.1141686.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Famoye, Felix, und Carl Lee. „Exponentiated-exponential geometric regression model“. Journal of Applied Statistics 44, Nr. 16 (14.12.2016): 2963–77. http://dx.doi.org/10.1080/02664763.2016.1267117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Mossel, Jorn, Guillaume Palacios und Jean-Sébastien Caux. „Geometric quenches in quantum integrable systems“. Journal of Statistical Mechanics: Theory and Experiment 2010, Nr. 09 (23.09.2010): L09001. http://dx.doi.org/10.1088/1742-5468/2010/09/l09001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Hackett, Timothy M., Sven G. Bilén, David J. Bell und Martin W. Lo. „Geometric Approach for Analytical Approximations of Satellite Coverage Statistics“. Journal of Spacecraft and Rockets 56, Nr. 5 (September 2019): 1286–99. http://dx.doi.org/10.2514/1.a34267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Dallas, A. C. „Characterizing the geometric distribution using expectations of order statistics“. Journal of Applied Probability 24, Nr. 2 (Juni 1987): 534–39. http://dx.doi.org/10.2307/3214277.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

FANG, KaiTai, und YongDao ZHOU. „A note on statistics simulation for geometric probability problems“. SCIENTIA SINICA Mathematica 41, Nr. 3 (01.04.2011): 253–64. http://dx.doi.org/10.1360/012009-442.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Dallas, A. C. „Characterizing the geometric distribution using expectations of order statistics“. Journal of Applied Probability 24, Nr. 02 (Juni 1987): 534–39. http://dx.doi.org/10.1017/s002190020003117x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Khesin, B., J. Lenells, G. Misiołek und S. C. Preston. „Geometry of Diffeomorphism Groups, Complete integrability and Geometric statistics“. Geometric and Functional Analysis 23, Nr. 1 (Februar 2013): 334–66. http://dx.doi.org/10.1007/s00039-013-0210-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Norris, Scott A., und Stephen J. Watson. „Geometric simulation and surface statistics of coarsening faceted surfaces“. Acta Materialia 55, Nr. 19 (November 2007): 6444–52. http://dx.doi.org/10.1016/j.actamat.2007.08.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie