Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Geometric preconditioner“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Geometric preconditioner" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Geometric preconditioner"
Sun, Qingtao, Runren Zhang, Ke Chen, Naixing Feng und Yunyun Hu. „Anisotropic modeling with geometric multigrid preconditioned finite-element method“. GEOPHYSICS 87, Nr. 3 (24.02.2022): A33—A36. http://dx.doi.org/10.1190/geo2021-0592.1.
Der volle Inhalt der QuelleCots, Olivier, Rémy Dutto, Sophie Jan und Serge Laporte. „Geometric preconditioner for indirect shooting and application to hybrid vehicle“. IFAC-PapersOnLine 58, Nr. 21 (2024): 43–48. http://dx.doi.org/10.1016/j.ifacol.2024.10.140.
Der volle Inhalt der QuellePan, Guangdong, und Aria Abubakar. „Iterative solution of 3D acoustic wave equation with perfectly matched layer boundary condition and multigrid preconditioner“. GEOPHYSICS 78, Nr. 5 (01.09.2013): T133—T140. http://dx.doi.org/10.1190/geo2012-0287.1.
Der volle Inhalt der QuelleCai, Mingchao, Andy Nonaka, John B. Bell, Boyce E. Griffith und Aleksandar Donev. „Efficient Variable-Coefficient Finite-Volume Stokes Solvers“. Communications in Computational Physics 16, Nr. 5 (November 2014): 1263–97. http://dx.doi.org/10.4208/cicp.070114.170614a.
Der volle Inhalt der Quellede Prenter, F., C. V. Verhoosel, E. H. van Brummelen, J. A. Evans, C. Messe, J. Benzaken und K. Maute. „Multigrid solvers for immersed finite element methods and immersed isogeometric analysis“. Computational Mechanics 65, Nr. 3 (26.11.2019): 807–38. http://dx.doi.org/10.1007/s00466-019-01796-y.
Der volle Inhalt der QuelleYuan, Yu-Xin, A.-Man Li, Ting Hu und Hong Liu. „An anisotropic multilevel preconditioner for solving the Helmholtz equation with unequal directional sampling intervals“. GEOPHYSICS 85, Nr. 6 (13.10.2020): T293—T300. http://dx.doi.org/10.1190/geo2019-0330.1.
Der volle Inhalt der QuelleFENG, QUANDONG, JINGFANG HUANG, NINGMING NIE, ZAIJIU SHANG und YIFA TANG. „IMPLEMENTING ARBITRARILY HIGH-ORDER SYMPLECTIC METHODS VIA KRYLOV DEFERRED CORRECTION TECHNIQUE“. International Journal of Modeling, Simulation, and Scientific Computing 01, Nr. 02 (Juni 2010): 277–301. http://dx.doi.org/10.1142/s1793962310000171.
Der volle Inhalt der QuelleMartynenko, S. I. „Potentialities of the Robust Multigrid Technique“. Computational Methods in Applied Mathematics 10, Nr. 1 (2010): 87–94. http://dx.doi.org/10.2478/cmam-2010-0004.
Der volle Inhalt der QuelleNammour, Rami, und William W. Symes. „Multiparameter Inversion: Cramer's Rule for Pseudodifferential Operators“. International Journal of Geophysics 2011 (2011): 1–12. http://dx.doi.org/10.1155/2011/780291.
Der volle Inhalt der QuelleChen, Shu-Wen, Feng Lu und Yao Ma. „Fitting Green’s Function FFT Acceleration Applied to Anisotropic Dielectric Scattering Problems“. International Journal of Antennas and Propagation 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/123739.
Der volle Inhalt der QuelleDissertationen zum Thema "Geometric preconditioner"
Dutto, Rémy. „Méthode à deux niveaux et préconditionnement géométrique en contrôle optimal. Application au problème de répartition de couple des véhicules hybrides électriques“. Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP088.
Der volle Inhalt der QuelleMotivated by the torque split and gear shift industrial problem of hybrid electric vehicles, this work mainly proposes two new indirect optimal control problem methods. The first one is the Macro-Micro method, which is based on a bilevel decomposition of the optimal control problem and uses Bellman’s value functions at fixed times. These functions are known to be difficult to create. The main idea of this method is to approximate these functions by neural networks, which leads to a hierarchical resolution of a low dimensional optimization problem and a set of independent optimal control problems defined on smaller time intervals. The second one is a geometric preconditioning method, which allows a more efficient resolution of the optimal control problem. This method is based on a geometrical interpretation of the Pontryagin’s co-state and on the Mathieu transformation, and uses a linear diffeomorphism which transforms an ellipse into a circle. These two methods, presented separately, can be combined and lead together to a fast, robust and light resolution for the torque split and gear shift optimal control problem, closer to the embedded requirements
Buchteile zum Thema "Geometric preconditioner"
Olas, Tomasz. „Parallel Geometric Multigrid Preconditioner for 3D FEM in NuscaS Software Package“. In Parallel Processing and Applied Mathematics, 166–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55224-3_17.
Der volle Inhalt der QuelleCalandra, H., S. Gratton und X. Vasseur. „A Geometric Multigrid Preconditioner for the Solution of the Helmholtz Equation in Three-Dimensional Heterogeneous Media on Massively Parallel Computers“. In Modern Solvers for Helmholtz Problems, 141–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-28832-1_6.
Der volle Inhalt der QuelleCampos, Fernando Otaviano, Rafael Sachetto Oliveira und Rodrigo Weber dos Santos. „Performance Comparison of Parallel Geometric and Algebraic Multigrid Preconditioners for the Bidomain Equations“. In Computational Science – ICCS 2006, 76–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11758501_15.
Der volle Inhalt der QuelleChristiansen, Lasse Hjuler, und John Bagterp Jørgensen. „New Preconditioners for Semi-linear PDE-Constrained Optimal Control in Annular Geometries“. In Lecture Notes in Computational Science and Engineering, 441–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39647-3_35.
Der volle Inhalt der QuelleLanger, U., und D. Pusch. „Comparison of Geometrical and Algebraic Multigrid Preconditioners for Data-Sparse Boundary Element Matrices“. In Large-Scale Scientific Computing, 130–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11666806_13.
Der volle Inhalt der Quelle„A Geometric Toolbox for Tetrahedral Finite Element Partitions“. In Efficient Preconditioned Solution Methods for Elliptic Partial Differential Equations, herausgegeben von Jan Brandts, Sergey Korotov und Michal Krizek, 103–22. BENTHAM SCIENCE PUBLISHERS, 2012. http://dx.doi.org/10.2174/978160805291211101010103.
Der volle Inhalt der QuelleCarpentieri, Bruno. „Krylov Subspace Methods for Big Data Analysis of Large Computational Electromagnetics Applications“. In Frontiers in Artificial Intelligence and Applications. IOS Press, 2021. http://dx.doi.org/10.3233/faia210232.
Der volle Inhalt der QuelleVentre, Salvatore, Bruno Carpentieri, Gaspare Giovinco, Antonello Tamburrino, Fabio Villone und Guglielmo Rubinacci. „An Effective H2-LU Preconditioner for Iterative Solution of MQS Integral-Based Formulation P“. In Advances in Fusion Energy Research. From Theory to Models, Algorithms, and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108106.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Geometric preconditioner"
Singh, Krishna M., Eldad J. Avital, John J. R. Williams, C. Ji und A. Munjiza. „Parallel Pressure Poisson Solvers for LES of Complex Geometry Flows“. In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-29748.
Der volle Inhalt der QuelleSingh, Abhishek Kumar, und Krishna Mohan Singh. „GMRES Solver for MLPG Method Applied to Heat Conduction“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24566.
Der volle Inhalt der QuelleCarrington, David B., und Vincent A. Mousseau. „Preconditioning and Solver Optimization Ideas for Radiative Transfer“. In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72040.
Der volle Inhalt der QuelleUdaykumar, H. S., R. Mittal und W. Shyy. „Simulation of Flow and Heat Transfer With Phase Boundaries and Complex Geometries on Cartesian Grids“. In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-1093.
Der volle Inhalt der QuelleKang, Suhyun, Duhun Hwang, Moonjung Eo, Taesup Kim und Wonjong Rhee. „Meta-Learning with a Geometry-Adaptive Preconditioner“. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023. http://dx.doi.org/10.1109/cvpr52729.2023.01543.
Der volle Inhalt der QuelleStroia, Iulian, Lucian Itu, Cosmin Nita, Laszlo Lazar und Constantin Suciu. „GPU accelerated geometric multigrid method: Comparison with preconditioned conjugate gradient“. In 2015 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2015. http://dx.doi.org/10.1109/hpec.2015.7322480.
Der volle Inhalt der QuelleChao Chen und O. Biro. „3-D time-harmonic Eddy current problems solved by the geometric multigrid preconditioned conjugate gradient method“. In IET 8th International Conference on Computation in Electromagnetics (CEM 2011). IET, 2011. http://dx.doi.org/10.1049/cp.2011.0017.
Der volle Inhalt der QuelleAdrian, Simon B., Francesco P. Andriullil und Thomas F. Eibert. „A Refinement - Free Calderón Preconditioner for the Electric Field Integral Equation on Geometries with Junctions“. In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2018. http://dx.doi.org/10.1109/apusncursinrsm.2018.8609072.
Der volle Inhalt der QuelleLarsen, Lance C. „Identifying the Cause of and Fixing Ill-Conditioned Matrices in Nuclear Analysis Codes“. In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16903.
Der volle Inhalt der QuelleJakupi, Pellumb, Bill Santos, Wilfred Binns, Ivan Barker und Jenny Been. „Microstructural Feature Analysis of X65 Steel Exposed to Ripple Load Testing Under Near Neutral pH Conditions“. In 2014 10th International Pipeline Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/ipc2014-33230.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Geometric preconditioner"
Badia, S., A. Martín, J. Principe, C. Soriano und R. Rossi. D3.1 Report on nonlinear domain decomposition preconditioners and release of the solvers. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.2.021.
Der volle Inhalt der QuelleKalashnikova, Irina. Preconditioner and convergence study for the Quantum Computer Aided Design (QCAD) nonlinear poisson problem posed on the Ottawa Flat 270 design geometry. Office of Scientific and Technical Information (OSTI), Mai 2012. http://dx.doi.org/10.2172/1044970.
Der volle Inhalt der QuelleBrosnahan und DeVries. PR-317-10702-R01 Testing for the Dilation Strength of Salt. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Dezember 2011. http://dx.doi.org/10.55274/r0010026.
Der volle Inhalt der Quelle