Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Geometric Measure of Entanglement“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Geometric Measure of Entanglement" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Geometric Measure of Entanglement"
Cao, Ya, und An Min Wang. „Revised geometric measure of entanglement“. Journal of Physics A: Mathematical and Theoretical 40, Nr. 13 (14.03.2007): 3507–37. http://dx.doi.org/10.1088/1751-8113/40/13/014.
Der volle Inhalt der QuelleWei, T. C., M. Ericsson, P. M. Goldbart und W. J. Munro. „Connections between relative entropy of entanglement and geometric measure of entanglement“. Quantum Information and Computation 4, Nr. 4 (Juli 2004): 252–72. http://dx.doi.org/10.26421/qic4.4-2.
Der volle Inhalt der QuelleGuo, Yu, Yanping Jia, Xinping Li und Lizhong Huang. „Genuine multipartite entanglement measure“. Journal of Physics A: Mathematical and Theoretical 55, Nr. 14 (09.03.2022): 145303. http://dx.doi.org/10.1088/1751-8121/ac5649.
Der volle Inhalt der QuelleShi, Xian, Lin Chen und Yixuan Liang. „Quantifying the entanglement of quantum states under the geometric method“. Physica Scripta 98, Nr. 1 (07.12.2022): 015103. http://dx.doi.org/10.1088/1402-4896/aca56e.
Der volle Inhalt der QuelleChang, Haixia, Vehbi E. Paksoy und Fuzhen Zhang. „Interpretation of generalized matrix functions via geometric measure of quantum entanglement“. International Journal of Quantum Information 13, Nr. 07 (Oktober 2015): 1550049. http://dx.doi.org/10.1142/s0219749915500495.
Der volle Inhalt der QuelleBuchholz, Lars Erik, Tobias Moroder und Otfried Gühne. „Evaluating the geometric measure of multiparticle entanglement“. Annalen der Physik 528, Nr. 3-4 (09.12.2015): 278–87. http://dx.doi.org/10.1002/andp.201500293.
Der volle Inhalt der QuelleZhang, Meiming, und Naihuan Jing. „Tighter monogamy relations of entanglement measures based on fidelity“. Laser Physics Letters 19, Nr. 8 (11.07.2022): 085205. http://dx.doi.org/10.1088/1612-202x/ac772e.
Der volle Inhalt der QuellePaz-Silva, Gerardo A., und John H. Reina. „Geometric multipartite entanglement measures“. Physics Letters A 365, Nr. 1-2 (Mai 2007): 64–69. http://dx.doi.org/10.1016/j.physleta.2006.12.065.
Der volle Inhalt der QuelleJang, Kap Soo, MuSeong Kim und DaeKil Park. „Phase-factor Dependence of the Geometric Entanglement Measure“. Journal of the Korean Physical Society 58, Nr. 5 (13.05.2011): 1058–75. http://dx.doi.org/10.3938/jkps.58.1058.
Der volle Inhalt der QuelleKAZAKOV, A. YA. „THE GEOMETRIC MEASURE OF ENTANGLEMENT OF THREE-PARTITE PURE STATES“. International Journal of Quantum Information 04, Nr. 06 (Dezember 2006): 907–15. http://dx.doi.org/10.1142/s0219749906002286.
Der volle Inhalt der QuelleDissertationen zum Thema "Geometric Measure of Entanglement"
Amouzou, Grâce Dorcas Akpéné. „Etude de l’intrication par les polynômes de Mermin : application aux algorithmes quantiques“. Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCK063.
Der volle Inhalt der QuelleThis thesis explores the measurement of entanglement in certain hypergraph states, in certain quantum algorithms like the Quantum Phase estimation and Counting algorithms as well as in reactive agent circuits, using the geometric measurement of entanglement, tools from Mermin polynomials and coefficient matrices. Entanglement is a concept present in quantum physics that has no known equivalent to date in classical physics.The core of our research is based on the implementation of entanglement detection and measurement devices in order to study quantum states from the point of view of entanglement.With this in mind, calculations are first carried out numerically and then on a quantum simulator and computer. Indeed, three of the tools used can be implemented on a quantum machine, which allows us to compare theoretical and "real" results
Teng, Peiyuan. „Tensor network and neural network methods in physical systems“. The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524836522115804.
Der volle Inhalt der QuelleFuentes, Guridi Ivette. „Entanglement and geometric phases in light-matter interactions“. Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400562.
Der volle Inhalt der QuelleGunhan, Ali Can. „Environmental Effects On Quantum Geometric Phase And Quantum Entanglement“. Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609450/index.pdf.
Der volle Inhalt der Quelleits stability decreases as the magnetic field strength increases. (By decrease in stability what we mean is the increase in the time rate of change of GP.) We showed that this decrease can be very rapid, and so it could be impossible to make use of it as a quantum logic gate in quantum information theory (QIT). To see if these behaviors differ in different environments, we analyze the same system for a fixed temperature environment which is under the influence of an electromagnetic field in a squeezed state. We find that the general dependence of GP on magnetic field does not change, but this time the effects are smoother. Namely, increase in magnetic field decreases the stability of GP also for in this environment
but this decrease is slower in comparison with the former case, and furthermore it occurs gradually. As a second problem we examine the entanglement of two atoms, which can be used as a two-qubit system in QIT. The entanglement is induced by an external quantum system. Both two-level atoms are coupled to a third two-level system by dipole-dipole interaction. The two atoms are assumed to be in ordinary vacuum and the third system is taken as influenced by a certain environment. We examined different types of environments. We show that the steady-state bipartite entanglement can be achieved in case the environment is a strongly fluctuating, that is a squeezed-vacuum, while it is not possible for a thermalized environment.
Hartley, Julian. „Aspects of entanglement and geometric phase in quantum information“. Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420622.
Der volle Inhalt der QuelleJohansson, Markus. „Entanglement and Quantum Computation from a Geometric and Topological Perspective“. Doctoral thesis, Uppsala universitet, Teoretisk kemi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-173120.
Der volle Inhalt der QuelleVilla, E. „Methods of geometric measure theory in stochastic geometry“. Doctoral thesis, Università degli Studi di Milano, 2007. http://hdl.handle.net/2434/28369.
Der volle Inhalt der QuelleHudgell, Sarahann. „Produce software to measure the geometric properties of airways /“. Leeds : University of Leeds, School of Computer Studies, 2008. http://www.comp.leeds.ac.uk/fyproj/reports/0708/Hudgell.pdf.
Der volle Inhalt der QuelleVedovato, Mattia. „Some variational and geometric problems on metric measure spaces“. Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/337379.
Der volle Inhalt der QuelleCASTELPIETRA, MARCO. „Metric, geometric and measure theoretic properties of nonsmooth value functions“. Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2007. http://hdl.handle.net/2108/202601.
Der volle Inhalt der QuelleThe value function is a focal point in optimal control theory. It is a known fact that the value function can be nonsmooth even with very smooth data. So, nonsmooth analysis is a useful tool to study its regularity. Semiconcavity is a regularity property, with some fine connection with nonsmooth analysis. Under appropriate assumptions, the value function is locally semiconcave. This property is connected with the interior sphere property of its level sets and their perimeters. In this thesis we introduce basic concepts of nonsmooth analysis and their connections with semiconcave functions, and sets of finite perimeter. We describe control systems, and we introduce the basic properties of the minimum time function T(x) and of the value function V (x). Then, using maximum principle, we extend some known results of interior sphere property for the attainable setsA(t), to the nonautonomous case and to systems with nonconstant running cost L. This property allow us to obtain some fine perimeter estimates for some class of control systems. Finally these regularity properties of the attainable sets can be extended to the level sets of the value function, and, with some controllability assumption, we also obtain a local semiconcavity for V (x). Moreoverwestudycontrolsystemswithstateconstraints. Inconstrained systems we loose many of regularity properties related to the value function. In fact, when a trajectory of control system touches the boundary of the constraint set Ω, some singularity effect occurs. This effect is clear even in the statement of the maximum principle. Indeed, due to the times in which a trajectory stays on ∂Ω, a measure boundary term (possibly, discontinuous) appears. So, we have no more semiconcavity for the value function, even for very simple control systems. But we recover Lipschitz continuity for the minimum time and we rewrite the constrained maximum principle with an explicit boundary term. We also obtain a kind of interior sphere property, and perimeter estimates for the attainable sets for some class of control systems.
Bücher zum Thema "Geometric Measure of Entanglement"
Federer, Herbert. Geometric Measure Theory. Herausgegeben von B. Eckmann und B. L. van der Waerden. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2.
Der volle Inhalt der QuelleFederer, Herbert. Geometric measure theory. Berlin: Springer, 1996.
Den vollen Inhalt der Quelle findenAmbrosio, Luigi, Hrsg. Geometric Measure Theory and Real Analysis. Pisa: Scuola Normale Superiore, 2014. http://dx.doi.org/10.1007/978-88-7642-523-3.
Der volle Inhalt der QuelleBombieri, E., Hrsg. Geometric Measure Theory and Minimal Surfaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10970-6.
Der volle Inhalt der Quelleservice), SpringerLink (Online, Hrsg. Geometric Measure Theory and Minimal Surfaces. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Den vollen Inhalt der Quelle findenMorgan, Frank. Geometric measure theory: A beginner's guide. Boston: Academic Press, 1988.
Den vollen Inhalt der Quelle findenDe Philippis, Guido, Xavier Ros-Oton und Georg S. Weiss. Geometric Measure Theory and Free Boundary Problems. Herausgegeben von Matteo Focardi und Emanuele Spadaro. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65799-4.
Der volle Inhalt der QuelleFigalli, Alessio, Ireneo Peral und Enrico Valdinoci. Partial Differential Equations and Geometric Measure Theory. Herausgegeben von Alberto Farina und Enrico Valdinoci. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74042-3.
Der volle Inhalt der Quelle1949-, Parks Harold R., Hrsg. Geometric integration theory. Boston, Mass: Birkhäuser, 2008.
Den vollen Inhalt der Quelle findenAllard, William, und Frederick Almgren, Hrsg. Geometric Measure Theory and the Calculus of Variations. Providence, Rhode Island: American Mathematical Society, 1986. http://dx.doi.org/10.1090/pspum/044.
Der volle Inhalt der QuelleBuchteile zum Thema "Geometric Measure of Entanglement"
Marín, Juan, José Martell, Dorina Mitrea, Irina Mitrea und Marius Mitrea. „Geometric Measure Theory“. In Progress in Mathematics, 27–161. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08234-4_2.
Der volle Inhalt der QuelleFederer, Herbert. „General measure theory“. In Geometric Measure Theory, 50–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2_3.
Der volle Inhalt der QuelleFederer, Herbert. „Introduction“. In Geometric Measure Theory, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2_1.
Der volle Inhalt der QuelleFederer, Herbert. „Grassmann algebra“. In Geometric Measure Theory, 8–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2_2.
Der volle Inhalt der QuelleFederer, Herbert. „Rectifiability“. In Geometric Measure Theory, 207–340. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2_4.
Der volle Inhalt der QuelleFederer, Herbert. „Homological integration theory“. In Geometric Measure Theory, 341–512. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2_5.
Der volle Inhalt der QuelleFederer, Herbert. „Applications to the calculus of variations“. In Geometric Measure Theory, 513–654. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62010-2_6.
Der volle Inhalt der QuelleBertlmann, Reinhold A., und Nicolai Friis. „Quantification and Conversion of Entanglement“. In Modern Quantum Theory, 485–541. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780199683338.003.0016.
Der volle Inhalt der QuelleBaggott, Jim. „Complementarity and entanglement“. In Beyond measure, 181–204. Oxford University PressOxford, 2003. http://dx.doi.org/10.1093/oso/9780198529279.003.0010.
Der volle Inhalt der QuelleJozsa, Richard. „Entanglement and Quantum Computation“. In The Geometric Universe, 369–79. Oxford University PressOxford, 1998. http://dx.doi.org/10.1093/oso/9780198500599.003.0027.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Geometric Measure of Entanglement"
Huertas, Samuel, Daniel Peláez, Valentina López, Laura Bravo und Romón Castañeda. „Spatial Entanglement of Geometric States of Ordinary Space in Non-paraxial Inteference“. In 2024 XVIII National Meeting on Optics and the IX Andean and Caribbean Conference on Optics and its Applications (ENO-CANCOA), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/eno-cancoa61307.2024.10751559.
Der volle Inhalt der QuelleSeshadri, Suparna, Karthik V. Myilswamy, Zhao-Hui Ma, Yu-Ping Huang und Andrew M. Weiner. „Measuring frequency-bin entanglement from a quasi-phase-matched lithium niobate microring“. In CLEO: Fundamental Science, FTu4F.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.ftu4f.3.
Der volle Inhalt der QuelleKlaver, Yvan, Randy te Morsche, Batoul Hashemi, Bruno L. Segat Frare, Pooya Torab Ahmadi, Niloofar Majidian Taleghani, Evan Jonker et al. „Enhanced stimulated Brillouin scattering in tellurite covered silicon nitride waveguides via geometric and cladding engineering“. In CLEO: Science and Innovations, STh4C.1. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sth4c.1.
Der volle Inhalt der QuelleŻyczkowski, Karol. „Geometry of Quantum Entanglement“. In Workshop on Entanglement and Quantum Decoherence. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.embs3.
Der volle Inhalt der QuelleSusulovska, N. A., und Kh P. Gnatenko. „Quantifying Geometric Measure of Entanglement of Multi-qubit Graph States on the IBM’s Quantum Computer“. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2021. http://dx.doi.org/10.1109/qce52317.2021.00080.
Der volle Inhalt der QuelleBeigi, Salman. „Maximal entanglement — A new measure of entanglement“. In 2014 Iran Workshop on Communication and Information Theory (IWCIT). IEEE, 2014. http://dx.doi.org/10.1109/iwcit.2014.6842486.
Der volle Inhalt der QuelleXie, Songbo, und Joseph H. Eberly. „Multi-Photonic Entanglement, A Geometric Approach“. In Frontiers in Optics. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/fio.2021.fth6d.6.
Der volle Inhalt der QuelleJha, Anand K., Mehul Malik und Robert W. Boyd. „Exploring Energy-Time Entanglement Using Geometric Phase“. In International Quantum Electronics Conference. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/iqec.2009.iwf7.
Der volle Inhalt der QuelleToro, Tatiana. „Potential Analysis Meets Geometric Measure Theory“. In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0107.
Der volle Inhalt der QuelleJack, B., J. Leach, J. Romero, S. Franke-Arnold, S. M. Barnett und M. J. Padgett. „Spatial Light Modulators to Measure Entanglement Between Spatial States“. In Frontiers in Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/fio.2009.jtub4.
Der volle Inhalt der Quelle