Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Geometric finiteness“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Geometric finiteness" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Geometric finiteness"
Lück, Wolfgang. „The Geometric Finiteness Obstruction“. Proceedings of the London Mathematical Society s3-54, Nr. 2 (März 1987): 367–84. http://dx.doi.org/10.1112/plms/s3-54.2.367.
Der volle Inhalt der QuelleSwarup, G. A. „Geometric finiteness and rationality“. Journal of Pure and Applied Algebra 86, Nr. 3 (Mai 1993): 327–33. http://dx.doi.org/10.1016/0022-4049(93)90107-5.
Der volle Inhalt der QuelleTuschmann, Wilderich. „Geometric diffeomorphism finiteness in low dimensions and homotopy group finiteness“. Mathematische Annalen 322, Nr. 2 (Februar 2002): 413–20. http://dx.doi.org/10.1007/s002080100281.
Der volle Inhalt der QuelleScott, G. P., und G. A. Swarup. „Geometric finiteness of certain Kleinian groups“. Proceedings of the American Mathematical Society 109, Nr. 3 (01.03.1990): 765. http://dx.doi.org/10.1090/s0002-9939-1990-1013981-6.
Der volle Inhalt der QuelleGrove, Karsten, Peter Petersen und Jyh-Yang Wu. „Geometric finiteness theorems via controlled topology“. Inventiones Mathematicae 99, Nr. 1 (Dezember 1990): 205–13. http://dx.doi.org/10.1007/bf01234417.
Der volle Inhalt der QuelleKapovich, Michael, und Beibei Liu. „Geometric finiteness in negatively pinched Hadamard manifolds“. Annales Academiae Scientiarum Fennicae Mathematica 44, Nr. 2 (Juni 2019): 841–75. http://dx.doi.org/10.5186/aasfm.2019.4444.
Der volle Inhalt der QuelleTorroba, Gonzalo. „Finiteness of flux vacua from geometric transitions“. Journal of High Energy Physics 2007, Nr. 02 (21.02.2007): 061. http://dx.doi.org/10.1088/1126-6708/2007/02/061.
Der volle Inhalt der QuelleProctor, Emily. „Orbifold homeomorphism finiteness based on geometric constraints“. Annals of Global Analysis and Geometry 41, Nr. 1 (24.05.2011): 47–59. http://dx.doi.org/10.1007/s10455-011-9270-4.
Der volle Inhalt der QuelleDurumeric, Oguz C. „Geometric finiteness in large families in dimension 3“. Topology 40, Nr. 4 (Juli 2001): 727–37. http://dx.doi.org/10.1016/s0040-9383(99)00080-4.
Der volle Inhalt der QuelleGrove, Karsten, Peter Petersen V und Jyh-Yang Wu. „Erratum to Geometric finiteness theorems via controlled topology“. Inventiones mathematicae 104, Nr. 1 (Dezember 1991): 221–22. http://dx.doi.org/10.1007/bf01245073.
Der volle Inhalt der QuelleDissertationen zum Thema "Geometric finiteness"
Fléchelles, Balthazar. „Geometric finiteness in convex projective geometry“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.
Der volle Inhalt der QuelleThis thesis is devoted to the study of geometrically finite convex projective orbifolds, following work of Ballas, Cooper, Crampon, Leitner, Long, Marquis and Tillmann. A convex projective orbifold is the quotient of a bounded, convex and open subset of an affine chart of real projective space (called a properly convex domain) by a discrete group of projective transformations that preserve it. We say that a convex projective orbifold is strictly convex if there are no non-trivial segments in the boundary of the convex subset, and round if in addition there is a unique supporting hyperplane at each boundary point. Following work of Cooper-Long-Tillmann and Crampon-Marquis, we say that a strictly convex orbifold is geometrically finite if its convex core decomposes as the union of a compact subset and of finitely many ends, called cusps, all of whose points have an injectivity radius smaller than a constant depending only on the dimension. Understanding what types of cusps may occur is crucial for the study of geometrically finite orbifolds. In the strictly convex case, the only known restriction on cusp holonomies, imposed by a generalization of the celebrated Margulis lemma proven by Cooper-Long-Tillmann and Crampon-Marquis, is that the holonomy of a cusp has to be virtually nilpotent. We give a complete characterization of the holonomies of cusps of strictly convex orbifolds and of those of round orbifolds. By generalizing a method of Cooper, which gave the only previously known example of a cusp of a strictly convex manifold with non virtually abelian holonomy, we build examples of cusps of strictly convex manifolds and round manifolds whose holonomy can be any finitely generated torsion-free nilpotent group. In joint work with M. Islam and F. Zhu, we also prove that for torsion-free relatively hyperbolic groups, relative P1-Anosov representations (in the sense of Kapovich-Leeb, Zhu and Zhu-Zimmer) that preserve a properly convex domain are exactly the holonomies of geometrically finite round manifolds.In the general case of non strictly convex projective orbifolds, no satisfactory definition of geometric finiteness is known at the moment. However, Cooper-Long-Tillmann, followed by Ballas-Cooper-Leitner, introduced a notion of generalized cusps in this context. Although they only require that the holonomy be virtually nilpotent, all previously known examples had virtually abelian holonomy. We build examples of generalized cusps whose holonomy can be any finitely generated torsion-free nilpotent group. We also allow ourselves to weaken Cooper-Long-Tillmann’s original definition by assuming only that the holonomy be virtually solvable, and this enables us to construct new examples whose holonomy is not virtually nilpotent.When a geometrically finite orbifold has no cusps, i.e. when its convex core is compact, we say that the orbifold is convex cocompact. Danciger-Guéritaud-Kassel provided a good definition of convex cocompactness for convex projective orbifolds that are not necessarily strictly convex. They proved that the holonomy of a convex cocompact convex projective orbifold is Gromov hyperbolic if and only if the associated representation is P1-Anosov. Using these results, Vinberg’s theory and work of Agol and Haglund-Wise about cubulated hyperbolic groups, we construct, in collaboration with S. Douba, T. Weisman and F. Zhu, examples of P1-Anosov representations for any cubulated hyperbolic group. This gives new examples of hyperbolic groups admitting Anosov representations
Kuckuck, Benno. „Finiteness properties of fibre products“. Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:a9624d17-9d11-4bd0-8c46-78cbba73469c.
Der volle Inhalt der QuelleBowditch, B. H. „Geometrical finiteness for hyperbolic groups“. Thesis, University of Warwick, 1988. http://wrap.warwick.ac.uk/99188/.
Der volle Inhalt der QuellePassaro, Davide. „Finiteness of Complete Intersection Calabi Yau Threefolds“. Thesis, Uppsala universitet, Teoretisk fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-394987.
Der volle Inhalt der QuelleMarseglia, Stéphane. „Variétés projectives convexes de volume fini“. Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD019/document.
Der volle Inhalt der QuelleIn this thesis, we study strictly convex projective manifolds of finite volume. Such a manifold is the quotient G\U of a properly convex open subset U of the real projective space RP^(n-1) by a discrete torsionfree subgroup G of SLn(R) preserving U. We study the Zariski closure of holonomies of convex projective manifolds of finite volume. For such manifolds G\U, we show that either the Zariski closure of G is SLn(R) or it is a conjugate of SO(1,n-1).We also focuss on the moduli space of strictly convex projective structures of finite volume. We show that this moduli space is a closed set of the representation space
Hung, Min Kai, und 洪旻楷. „On the finiteness of geometric knots“. Thesis, 2010. http://ndltd.ncl.edu.tw/handle/14407283257393717053.
Der volle Inhalt der Quelle國立臺灣師範大學
數學系
98
In these paper, we consider several properties of Normal Projection Energy. Firstly, among the class of $C^{1,1}$-smooth knots, the upper bound of Normal Projection Energy gives a uniform lower bound of Gromov's distorsion of knots. Secondly, Normal Projection Energy is bounded by the product of total curvature and ropelength. Thirdly, to prove the bound of Normal Projection Energy, we study the curves which attain the infimum of the total absolute curvature in the set of curves contained in a ball with fixed endpoints and length.
„Survey on the finiteness results in geometric analysis on complete manifolds“. 2010. http://library.cuhk.edu.hk/record=b5894429.
Der volle Inhalt der QuelleThesis (M.Phil.)--Chinese University of Hong Kong, 2010.
Includes bibliographical references (leaves 102-105).
Abstracts in English and Chinese.
Chapter 0 --- Introduction --- p.6
Chapter 1 --- Background knowledge --- p.9
Chapter 1.1 --- Comparison theorems --- p.9
Chapter 1.2 --- Bochner techniques --- p.13
Chapter 1.3 --- Eigenvalue estimates for Laplacian operator --- p.14
Chapter 1.4 --- Spectral theory for Schrodinger operator on Rieman- nian manifolds --- p.16
Chapter 2 --- Vanishing theorems --- p.20
Chapter 2.1 --- Liouville type theorem for Lp subharmonic functions --- p.20
Chapter 2.2 --- Generalized type of vanishing theorem --- p.21
Chapter 3 --- Finite dimensionality results --- p.28
Chapter 3.1 --- Three types of integral inequalities --- p.28
Chapter 3.2 --- Weak Harnack inequality --- p.34
Chapter 3.3 --- Li's abstract finite dimensionality theorem --- p.37
Chapter 3.4 --- Applications of the finite dimensionality theorem --- p.42
Chapter 4 --- Ends of Riemannian manifolds --- p.48
Chapter 4.1 --- Green's function --- p.48
Chapter 4.2 --- Ends and harmonic functions --- p.53
Chapter 4.3 --- Some topological applications --- p.72
Chapter 5 --- Splitting theorems --- p.79
Chapter 5.1 --- Splitting theorems for manifolds with non-negative Ricci curvature --- p.79
Chapter 5.2 --- Splitting theorems for manifolds of Ricci curvature with a negative lower bound --- p.83
Chapter 5.3 --- Manifolds with the maximal possible eigenvalue --- p.93
Bibliography --- p.102
Bücher zum Thema "Geometric finiteness"
Marco, Rigoli, und Setti Alberto G. 1960-, Hrsg. Vanishing and finiteness results in geometric analysis: A generalization of the Bochner technique. Basel: Birkhauser, 2008.
Den vollen Inhalt der Quelle findenSession, Ring Theory. Ring theory and its applications: Ring Theory Session in honor of T.Y. Lam on his 70th birthday at the 31st Ohio State-Denison Mathematics Conference, May 25-27, 2012, The Ohio State University, Columbus, OH. Herausgegeben von Lam, T. Y. (Tsit-Yuen), 1942- honouree, Huynh, Dinh Van, 1947- editor of compilation und Ohio State-Denison Mathematics Conference. Providence, Rhode Island: American Mathematical Society, 2014.
Den vollen Inhalt der Quelle findenVanishing and Finiteness Results in Geometric Analysis. Basel: Birkhäuser Basel, 2008. http://dx.doi.org/10.1007/978-3-7643-8642-9.
Der volle Inhalt der QuellePigola, Stefano, Marco Rigoli und Alberto G. Setti. Vanishing and Finiteness Results in Geometric Analysis: A Generalization of the Bochner Technique. Springer London, Limited, 2008.
Den vollen Inhalt der Quelle findenWitzel, Stefan. Finiteness Properties of Arithmetic Groups Acting on Twin Buildings. Springer London, Limited, 2014.
Den vollen Inhalt der Quelle findenFiniteness Properties of Arithmetic Groups Acting on Twin Buildings. Springer, 2014.
Den vollen Inhalt der Quelle findenHrushovski, Ehud, und François Loeser. Non-Archimedean Tame Topology and Stably Dominated Types (AM-192). Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161686.001.0001.
Der volle Inhalt der QuelleAbbes, Ahmed, und Michel Gros. Representations of the fundamental group and the torsor of deformations. Global aspects. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691170282.003.0003.
Der volle Inhalt der QuelleRings with Polynomial Identities and Finite Dimensional Representations of Algebras. American Mathematical Society, 2020.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Geometric finiteness"
Katz, Nicholas M., Serge Lang und Kenneth A. Ribet. „Finiteness Theorems in Geometric Classfield Theory“. In Collected Papers Volume III, 101–35. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-2116-6_9.
Der volle Inhalt der QuelleLang, Serge. „Finiteness Theorems in Geometric Classfield Theory“. In Springer Collected Works in Mathematics, 101–35. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4614-6324-5_9.
Der volle Inhalt der QuelleSuciu, Alexander I. „Geometric and homological finiteness in free abelian covers“. In Configuration Spaces, 461–501. Pisa: Scuola Normale Superiore, 2012. http://dx.doi.org/10.1007/978-88-7642-431-1_21.
Der volle Inhalt der QuelleAndrzejewski, Pawel. „Equivariant finiteness obstruction and its geometric applications - A survey“. In Lecture Notes in Mathematics, 20–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0084735.
Der volle Inhalt der QuelleSchlomiuk, Dana. „Aspects of planar polynomial vector fields: global versus local, real versus complex, analytic versus algebraic and geometric“. In Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, 471–509. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-1025-2_13.
Der volle Inhalt der QuelleGörtz, Ulrich, und Torsten Wedhorn. „Finiteness Conditions“. In Algebraic Geometry I, 241–85. Wiesbaden: Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9722-0_11.
Der volle Inhalt der QuelleFaltings, Gerd. „Finiteness Theorems for Abelian Varieties over Number Fields“. In Arithmetic Geometry, 9–26. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4613-8655-1_2.
Der volle Inhalt der QuelleZarhin, Yuri G. „Finiteness theorems for dimensions of irreducible λ-adic representations“. In Arithmetic Algebraic Geometry, 431–44. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0457-2_20.
Der volle Inhalt der QuelleBesson, Gérard, und Gilles Courtois. „Compactness and Finiteness Results for Gromov-Hyperbolic Spaces“. In Surveys in Geometry I, 205–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86695-2_6.
Der volle Inhalt der QuelleOllivier, François. „Canonical Bases: Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms“. In Effective Methods in Algebraic Geometry, 379–400. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0441-1_25.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Geometric finiteness"
Koike, Satoshi. „Finiteness theorems on Blow-Nash triviality for real algebraic singularities“. In Geometric Singularity Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc65-0-10.
Der volle Inhalt der QuelleBejan, Adrian, und Sylvie Lorente. „A Course on Flow-System Configuration and Multi-Scale Design“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59203.
Der volle Inhalt der QuelleMartinez, Rudolph, Brent S. Paul, Morgan Eash und Carina Ting. „A Three-Dimensional Wiener-Hopf Technique for General Bodies of Revolution: Part 1—Theory“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-13344.
Der volle Inhalt der Quelle