Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Geometric algebra for conics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Geometric algebra for conics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Geometric algebra for conics"
Dragovic, Vladimir. „Algebro-geometric approach to the Yang-Baxter equation and related topics“. Publications de l'Institut Math?matique (Belgrade) 91, Nr. 105 (2012): 25–48. http://dx.doi.org/10.2298/pim1205025d.
Der volle Inhalt der QuelleHalbeisen, Lorenz, und Norbert Hungerbühler. „The exponential pencil of conics“. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 59, Nr. 3 (21.12.2017): 549–71. http://dx.doi.org/10.1007/s13366-017-0375-1.
Der volle Inhalt der QuelleRASHED, ROSHDI. „LES CONSTRUCTIONS GÉOMÉTRIQUES ENTRE GÉOMÉTRIE ET ALGÈBRE: L'ÉPÎTRE D'AB AL-JD À AL-BRN“. Arabic Sciences and Philosophy 20, Nr. 1 (März 2010): 1–51. http://dx.doi.org/10.1017/s0957423909990075.
Der volle Inhalt der QuelleHalbeisen, Lorenz, und Norbert Hungerbühler. „Closed chains of conics carrying poncelet triangles“. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 58, Nr. 2 (18.01.2017): 277–302. http://dx.doi.org/10.1007/s13366-016-0327-1.
Der volle Inhalt der QuelleHalbeisen, Lorenz, und Norbert Hungerbühler. „Generalized pencils of conics derived from cubics“. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 61, Nr. 4 (15.04.2020): 681–93. http://dx.doi.org/10.1007/s13366-020-00499-3.
Der volle Inhalt der QuelleMirman, Boris. „Short cycles of Poncelet’s conics“. Linear Algebra and its Applications 432, Nr. 10 (Mai 2010): 2543–64. http://dx.doi.org/10.1016/j.laa.2009.11.032.
Der volle Inhalt der QuelleDiemente, Damon. „Algebra in the Service of Geometry: Can Euler's Line Be Parallel to a Side of a Triangle?“ Mathematics Teacher 93, Nr. 5 (Mai 2000): 428–31. http://dx.doi.org/10.5951/mt.93.5.0428.
Der volle Inhalt der QuelleNievergelt, Yves. „Fitting conics of specific types to data“. Linear Algebra and its Applications 378 (Februar 2004): 1–30. http://dx.doi.org/10.1016/j.laa.2003.08.022.
Der volle Inhalt der QuelleWu, Junhua. „Conics arising from internal points and their binary codes“. Linear Algebra and its Applications 439, Nr. 2 (Juli 2013): 422–34. http://dx.doi.org/10.1016/j.laa.2013.04.004.
Der volle Inhalt der QuelleEaster, Robert Benjamin, und Eckhard Hitzer. „Conic and cyclidic sections in double conformal geometric algebra G8,2 with computing and visualization using Gaalop“. Mathematical Methods in the Applied Sciences 43, Nr. 1 (09.09.2019): 334–57. http://dx.doi.org/10.1002/mma.5887.
Der volle Inhalt der QuelleDissertationen zum Thema "Geometric algebra for conics"
Machálek, Lukáš. „Aplikace geometrických algeber“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445454.
Der volle Inhalt der QuelleEllis, Amanda. „Classification of conics in the tropical projective plane /“. Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1104.pdf.
Der volle Inhalt der QuelleEllis, Amanda. „Classifcation of Conics in the Tropical Projective Plane“. BYU ScholarsArchive, 2005. https://scholarsarchive.byu.edu/etd/697.
Der volle Inhalt der QuelleLopes, Wilder Bezerra. „Geometric-algebra adaptive filters“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-22092016-143525/.
Der volle Inhalt der QuelleEste documento introduz uma nova classe de filtros adaptativos, entitulados Geometric-Algebra Adaptive Filters (GAAFs). Eles s~ao projetados via formulação do problema de minimização (uma função custo de mínimos quadrados) do ponto de vista de álgebra geométrica (GA), uma abrangente linguagem matemática apropriada para a descrição de transformações geométricas. Adicionalmente, diferente do que ocorre na formulação com álgebra linear, cálculo geométrico (a extensão de álgebra geométrica que possibilita o uso de cálculo diferencial) permite aplicar as mesmas técnicas de derivação independentemente do tipo de dados (subálgebra), isto é, números reais, números complexos, quaternions etc. Usando essas e outras características, uma função custo geral de mínimos quadrados é proposta, da qual dois tipos de GAAFs são gerados. O primeiro, chamado standard, generaliza filtros adaptativos da literatura concebidos sob a perspectiva de subálgebras de GA. As seguintes variantes do filtro least-mean squares (LMS) s~ao obtidas como casos particulares: LMS real, LMS complexo e LMS quaternions. Uma análise mean-square é desenvolvida e corroborada por simulações para diferentes níveis de ruído de medição em um cenário de identificação de sistemas. O segundo tipo, chamado pose estimation, é projetado para estimar transformações rígidas - rotação e translação { em espaços n-dimensionais. A performance do filtro GA-LMS é avaliada em uma aplicação de alinhamento tridimensional na qual ele estima a tranformação rígida que alinha duas nuvens de pontos com partes em comum.
Kessaris, Haris. „Geometric algebra and applications“. Thesis, University of Cambridge, 2001. https://www.repository.cam.ac.uk/handle/1810/251756.
Der volle Inhalt der QuelleMOREIRA, JOHANN SENRA. „CONSTRUCTION OF THE CONICS USING THE GEOMETRIC DRAWING AND CONCRETE INSTRUMENTS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33061@1.
Der volle Inhalt der QuelleCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL
O presente trabalho tem como objetivo facilitar o estudo das cônicas e ainda despertar o interesse do aluno para o desenho geométrico. Será apresentado que as curvas cônicas estão em nosso dia a dia, não só como beleza estética, mas também provocando fenômenos físicos amplamente utilizado pela arquitetura e engenharia civil, como acústica e reflexão da luz. Utilizaremos instrumentos para desenhar curvas que despertem a curiosidade dos alunos e faremos uso das equações e lugares geométricos a fim de demostrar tais recursos. Pretende-se assim que ao adquirir tais conhecimentos o aluno aprimore seu entendimento matemático e amplie seu horizonte cultural.
The present research aims to facilitate the study of the conics and also to arouse the interest of the student for the geometric drawing. The conic curves will be presented not only as they are in our day to day as aesthetic beauty but also as responsible for the physical phenomena widely used by architecture and civil engineering as well as acoustics and reflection of light. We will use instruments to draw curves that arouse the curiosity of the students, making use of the equations and locus in order to demonstrate such resources. It is intended that the student acquire this knowledge, improving his mathematical understanding and broadening his cultural horizon.
Minh, Tuan Pham, Tomohiro Yoshikawa, Takeshi Furuhashi und Kaita Tachibana. „Robust feature extractions from geometric data using geometric algebra“. IEEE, 2009. http://hdl.handle.net/2237/13896.
Der volle Inhalt der QuelleKhalfallah, Hazem. „Mordell-Weil theorem and the rank of elliptical curves“. CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3119.
Der volle Inhalt der QuelleWu, Junhua. „Geometric structures and linear codes related to conics in classical projective planes of odd orders“. Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 105 p, 2009. http://proquest.umi.com/pqdweb?did=1654490971&sid=2&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Der volle Inhalt der QuelleWareham, Richard James. „Computer graphics using conformal geometric algebra“. Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612753.
Der volle Inhalt der QuelleBücher zum Thema "Geometric algebra for conics"
Artin, E. Geometric Algebra. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1988. http://dx.doi.org/10.1002/9781118164518.
Der volle Inhalt der QuelleBayro-Corrochano, Eduardo, und Gerik Scheuermann, Hrsg. Geometric Algebra Computing. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-108-0.
Der volle Inhalt der QuelleKondrat'ev, Gennadiy. Clifford Geometric Algebra. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1832489.
Der volle Inhalt der Quelle1960-, Zaslavskiĭ A. A., Hrsg. Geometry of conics. Providence, R.I: American Mathematical Society, 2007.
Den vollen Inhalt der Quelle findenLi, Hongbo, Peter J. Olver und Gerald Sommer, Hrsg. Computer Algebra and Geometric Algebra with Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b137294.
Der volle Inhalt der QuelleShifrin, Theodore. Abstract algebra: A geometric approach. Englewood Cliffs, N.J: Prentice Hall, 1996.
Den vollen Inhalt der Quelle findenGeometric algebra for computer graphics. London: Springer, 2008.
Den vollen Inhalt der Quelle findenHildenbrand, Dietmar. Foundations of Geometric Algebra Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Den vollen Inhalt der Quelle findenLinear algebra: A geometric approach. London: Chapman & Hall, 1993.
Den vollen Inhalt der Quelle findenFontijne, D. H. F. Efficient implementation of geometric algebra. [S.l: s.n.], 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Geometric algebra for conics"
Hildenbrand, Dietmar. „GAALOPWeb for Conics“. In The Power of Geometric Algebra Computing, 87–100. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003139003-10.
Der volle Inhalt der QuelleNeri, Ferrante. „An Introduction to Geometric Algebra and Conics“. In Linear Algebra for Computational Sciences and Engineering, 203–49. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21321-3_6.
Der volle Inhalt der QuelleNeri, Ferrante. „An Introduction to Geometric Algebra and Conics“. In Linear Algebra for Computational Sciences and Engineering, 159–207. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40341-0_6.
Der volle Inhalt der QuelleHitzer, Eckhard M. S. „Conic Sections and Meet Intersections in Geometric Algebra“. In Computer Algebra and Geometric Algebra with Applications, 350–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11499251_25.
Der volle Inhalt der QuelleSerrano Rubio, Juan Pablo, Arturo Hernández Aguirre und Rafael Herrera Guzmán. „A Conic Higher Order Neuron Based on Geometric Algebra and Its Implementation“. In Advances in Computational Intelligence, 223–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37798-3_20.
Der volle Inhalt der QuelleGelfand, Israel M., und Alexander Shen. „Geometric progressions“. In Algebra, 81–83. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-0335-3_41.
Der volle Inhalt der QuelleGelfand, Israel M., und Alexander Shen. „Geometric illustrations“. In Algebra, 134–36. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-0335-3_69.
Der volle Inhalt der QuelleVince, John. „Geometric Algebra“. In Mathematics for Computer Graphics, 337–72. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7336-6_14.
Der volle Inhalt der QuelleDorst, Leo. „Geometric Algebra“. In Computer Vision, 329–33. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-0-387-31439-6_656.
Der volle Inhalt der QuelleXambó-Descamps, Sebastià. „Geometric Algebra“. In SpringerBriefs in Mathematics, 41–61. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00404-0_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Geometric algebra for conics"
Matos, S. A., C. R. Paiva und A. M. Barbosa. „Conical refraction in generalized biaxial media: A geometric algebra approach“. In IEEE EUROCON 2011 - International Conference on Computer as a Tool. IEEE, 2011. http://dx.doi.org/10.1109/eurocon.2011.5929176.
Der volle Inhalt der QuelleBajaj, Jasmine, und Babita Jajodia. „Squaring Technique using Vedic Mathematics“. In International Conference on Women Researchers in Electronics and Computing. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.114.75.
Der volle Inhalt der QuelleLi, Wanzhen, Tao Sun, Xinming Huo und Yimin Song. „CGA Approach to Kinematic Analysis of a 2-DoF Parallel Positioning Mechanism“. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60529.
Der volle Inhalt der QuelleLi, Hongbo. „Automated Geometric Reasoning with Geometric Algebra“. In ISSAC '17: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3087604.3087663.
Der volle Inhalt der QuelleZambo, Samantha. „Defining geometric algebra semantics“. In the 48th Annual Southeast Regional Conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1900008.1900157.
Der volle Inhalt der QuelleHildenbrand, Dietmar. „Foundations of Geometric Algebra computing“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756054.
Der volle Inhalt der QuelleQing, Ni, und Wang Zhengzhi. „Geometric invariants using geometry algebra“. In 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering (CCIE 2011). IEEE, 2011. http://dx.doi.org/10.1109/ccieng.2011.6008094.
Der volle Inhalt der QuelleGunn, Charles G., und Steven De Keninck. „Geometric algebra and computer graphics“. In SIGGRAPH '19: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3305366.3328099.
Der volle Inhalt der QuelleReisossadat, S. H. R., F. Kheirandish, H. Pahlavani, S. Salehi, Piotr Kielanowski, Anatol Odzijewicz, Martin Schlichenmaier und Theodore Voronov. „Realization of a deformed parafermionic algebra“. In GEOMETRIC METHODS IN PHYSICS. AIP, 2008. http://dx.doi.org/10.1063/1.3043848.
Der volle Inhalt der QuelleAltamirano-Gomez, Gerardo, und Eduardo Bayro-Corrochano. „Conformal Geometric Algebra method for detection of geometric primitives“. In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7900291.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Geometric algebra for conics"
Bashelor, Andrew Clark. Enumerative Algebraic Geometry: Counting Conics. Fort Belvoir, VA: Defense Technical Information Center, Mai 2005. http://dx.doi.org/10.21236/ada437184.
Der volle Inhalt der QuelleHanlon, J., und H. Ziock. Using geometric algebra to study optical aberrations. Office of Scientific and Technical Information (OSTI), Mai 1997. http://dx.doi.org/10.2172/468621.
Der volle Inhalt der QuelleMeisel, L. V. A Mathematica Formulation of Geometric Algebra in 3-Space. Fort Belvoir, VA: Defense Technical Information Center, März 1995. http://dx.doi.org/10.21236/ada295512.
Der volle Inhalt der QuelleHanlon, J., und H. Ziock. Using geometric algebra to understand pattern rotations in multiple mirror optical systems. Office of Scientific and Technical Information (OSTI), Mai 1997. http://dx.doi.org/10.2172/468622.
Der volle Inhalt der QuelleYanovski, Alexandar B. Geometric Interpretation of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Lie Algebra $A_2$. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-23-2011-97-111.
Der volle Inhalt der Quelle