Auswahl der wissenschaftlichen Literatur zum Thema „Geometric algebra for conics“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Geometric algebra for conics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Geometric algebra for conics"

1

Dragovic, Vladimir. „Algebro-geometric approach to the Yang-Baxter equation and related topics“. Publications de l'Institut Math?matique (Belgrade) 91, Nr. 105 (2012): 25–48. http://dx.doi.org/10.2298/pim1205025d.

Der volle Inhalt der Quelle
Annotation:
We review the results of algebro-geometric approach to 4 ? 4 solutions of the Yang-Baxter equation. We emphasis some further geometric properties, connected with the double-reflection theorem, the Poncelet porism and the Euler-Chasles correspondence. We present a list of classifications in Mathematical Physics with a similar geometric background, related to pencils of conics. In the conclusion, we introduce a notion of discriminantly factorizable polynomials as a result of a computational experiment with elementary n-valued groups.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Halbeisen, Lorenz, und Norbert Hungerbühler. „The exponential pencil of conics“. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 59, Nr. 3 (21.12.2017): 549–71. http://dx.doi.org/10.1007/s13366-017-0375-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

RASHED, ROSHDI. „LES CONSTRUCTIONS GÉOMÉTRIQUES ENTRE GÉOMÉTRIE ET ALGÈBRE: L'ÉPÎTRE D'AB AL-JD À AL-BRN“. Arabic Sciences and Philosophy 20, Nr. 1 (März 2010): 1–51. http://dx.doi.org/10.1017/s0957423909990075.

Der volle Inhalt der Quelle
Annotation:
AbstractAbū al-Jūd Muḥammad ibn al-Layth is one of the mathematicians of the 10th century who contributed most to the novel chapter on the geometric construction of the problems of solids and super-solids, and also to another chapter on solving cubic and bi-quadratic equations with the aid of conics. His works, which were significant in terms of the results they contained, are moreover important with regard to the new relations they established between algebra and geometry. Good fortune transmitted to us his correspondences with the mathematician and astronomer al-Bīrūnī. The questions they debated, and the answers they yielded, all offer us multiple in vivo perspectives on the research that was undertaken in that period. The reader would find in this article a critical edition and French translation of this correspondence, with historical and mathematical commentaries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Halbeisen, Lorenz, und Norbert Hungerbühler. „Closed chains of conics carrying poncelet triangles“. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 58, Nr. 2 (18.01.2017): 277–302. http://dx.doi.org/10.1007/s13366-016-0327-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Halbeisen, Lorenz, und Norbert Hungerbühler. „Generalized pencils of conics derived from cubics“. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 61, Nr. 4 (15.04.2020): 681–93. http://dx.doi.org/10.1007/s13366-020-00499-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mirman, Boris. „Short cycles of Poncelet’s conics“. Linear Algebra and its Applications 432, Nr. 10 (Mai 2010): 2543–64. http://dx.doi.org/10.1016/j.laa.2009.11.032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Diemente, Damon. „Algebra in the Service of Geometry: Can Euler's Line Be Parallel to a Side of a Triangle?“ Mathematics Teacher 93, Nr. 5 (Mai 2000): 428–31. http://dx.doi.org/10.5951/mt.93.5.0428.

Der volle Inhalt der Quelle
Annotation:
This investigation of Euler's line has become a regular and valued unit in my honors–geometry syllabus. It originated with an intelligent question from a curious student. Its geometric foundation comprises sophisticated Euclidean triangle geometry. Its solution requires plentiful but not excessively complicated algebra. It culminates in the discovery of a conic locus that can be verified by construction on a computer screen.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Nievergelt, Yves. „Fitting conics of specific types to data“. Linear Algebra and its Applications 378 (Februar 2004): 1–30. http://dx.doi.org/10.1016/j.laa.2003.08.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wu, Junhua. „Conics arising from internal points and their binary codes“. Linear Algebra and its Applications 439, Nr. 2 (Juli 2013): 422–34. http://dx.doi.org/10.1016/j.laa.2013.04.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Easter, Robert Benjamin, und Eckhard Hitzer. „Conic and cyclidic sections in double conformal geometric algebra G8,2 with computing and visualization using Gaalop“. Mathematical Methods in the Applied Sciences 43, Nr. 1 (09.09.2019): 334–57. http://dx.doi.org/10.1002/mma.5887.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Geometric algebra for conics"

1

Machálek, Lukáš. „Aplikace geometrických algeber“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445454.

Der volle Inhalt der Quelle
Annotation:
Tato diplomová práce se zabývá využitím geometrické algebry pro kuželosečky (GAC) v autonomní navigaci, prezentované na pohybu robota v trubici. Nejprve jsou zavedeny teoretické pojmy z geometrických algeber. Následně jsou prezentovány kuželosečky v GAC. Dále je provedena implementace enginu, který je schopný provádět základní operace v GAC, včetně zobrazování kuželoseček zadaných v kontextu GAC. Nakonec je ukázán algoritmus, který odhadne osu trubice pomocí bodů, které umístí do prostoru pomocí středů elips, umístěných v obrazu, získaných obrazovým filtrem a fitovacím algoritmem.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ellis, Amanda. „Classification of conics in the tropical projective plane /“. Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1104.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ellis, Amanda. „Classifcation of Conics in the Tropical Projective Plane“. BYU ScholarsArchive, 2005. https://scholarsarchive.byu.edu/etd/697.

Der volle Inhalt der Quelle
Annotation:
This paper defines tropical projective space, TP^n, and the tropical general linear group TPGL(n). After discussing some simple examples of tropical polynomials and their hypersurfaces, a strategy is given for finding all conics in the tropical projective plane. The classification of conics and an analysis of the coefficient space corresponding to such conics is given.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lopes, Wilder Bezerra. „Geometric-algebra adaptive filters“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-22092016-143525/.

Der volle Inhalt der Quelle
Annotation:
This document introduces a new class of adaptive filters, namely Geometric- Algebra Adaptive Filters (GAAFs). Those are generated by formulating the underlying minimization problem (a least-squares cost function) from the perspective of Geometric Algebra (GA), a comprehensive mathematical language well-suited for the description of geometric transformations. Also, differently from the usual linear algebra approach, Geometric Calculus (the extension of Geometric Algebra to differential calculus) allows to apply the same derivation techniques regardless of the type (subalgebra) of the data, i.e., real, complex-numbers, quaternions etc. Exploiting those characteristics, among others, a general leastsquares cost function is posed, from which two types of GAAFs are designed. The first one, called standard, provides a generalization of regular adaptive filters for any subalgebra of GA. From the obtained update rule, it is shown how to recover the following least-mean squares (LMS) adaptive filter variants: real-entries LMS, complex LMS, and quaternions LMS. Mean-square analysis and simulations in a system identification scenario are provided, showing almost perfect agreement for different levels of measurement noise. The second type, called pose estimation, is designed to estimate rigid transformations { rotation and translation - in n-dimensional spaces. The GA-LMS performance is assessed in a 3-dimensional registration problem, in which it is able to estimate the rigid transformation that aligns two point clouds that share common parts.
Este documento introduz uma nova classe de filtros adaptativos, entitulados Geometric-Algebra Adaptive Filters (GAAFs). Eles s~ao projetados via formulação do problema de minimização (uma função custo de mínimos quadrados) do ponto de vista de álgebra geométrica (GA), uma abrangente linguagem matemática apropriada para a descrição de transformações geométricas. Adicionalmente, diferente do que ocorre na formulação com álgebra linear, cálculo geométrico (a extensão de álgebra geométrica que possibilita o uso de cálculo diferencial) permite aplicar as mesmas técnicas de derivação independentemente do tipo de dados (subálgebra), isto é, números reais, números complexos, quaternions etc. Usando essas e outras características, uma função custo geral de mínimos quadrados é proposta, da qual dois tipos de GAAFs são gerados. O primeiro, chamado standard, generaliza filtros adaptativos da literatura concebidos sob a perspectiva de subálgebras de GA. As seguintes variantes do filtro least-mean squares (LMS) s~ao obtidas como casos particulares: LMS real, LMS complexo e LMS quaternions. Uma análise mean-square é desenvolvida e corroborada por simulações para diferentes níveis de ruído de medição em um cenário de identificação de sistemas. O segundo tipo, chamado pose estimation, é projetado para estimar transformações rígidas - rotação e translação { em espaços n-dimensionais. A performance do filtro GA-LMS é avaliada em uma aplicação de alinhamento tridimensional na qual ele estima a tranformação rígida que alinha duas nuvens de pontos com partes em comum.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kessaris, Haris. „Geometric algebra and applications“. Thesis, University of Cambridge, 2001. https://www.repository.cam.ac.uk/handle/1810/251756.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

MOREIRA, JOHANN SENRA. „CONSTRUCTION OF THE CONICS USING THE GEOMETRIC DRAWING AND CONCRETE INSTRUMENTS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33061@1.

Der volle Inhalt der Quelle
Annotation:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL
O presente trabalho tem como objetivo facilitar o estudo das cônicas e ainda despertar o interesse do aluno para o desenho geométrico. Será apresentado que as curvas cônicas estão em nosso dia a dia, não só como beleza estética, mas também provocando fenômenos físicos amplamente utilizado pela arquitetura e engenharia civil, como acústica e reflexão da luz. Utilizaremos instrumentos para desenhar curvas que despertem a curiosidade dos alunos e faremos uso das equações e lugares geométricos a fim de demostrar tais recursos. Pretende-se assim que ao adquirir tais conhecimentos o aluno aprimore seu entendimento matemático e amplie seu horizonte cultural.
The present research aims to facilitate the study of the conics and also to arouse the interest of the student for the geometric drawing. The conic curves will be presented not only as they are in our day to day as aesthetic beauty but also as responsible for the physical phenomena widely used by architecture and civil engineering as well as acoustics and reflection of light. We will use instruments to draw curves that arouse the curiosity of the students, making use of the equations and locus in order to demonstrate such resources. It is intended that the student acquire this knowledge, improving his mathematical understanding and broadening his cultural horizon.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Minh, Tuan Pham, Tomohiro Yoshikawa, Takeshi Furuhashi und Kaita Tachibana. „Robust feature extractions from geometric data using geometric algebra“. IEEE, 2009. http://hdl.handle.net/2237/13896.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Khalfallah, Hazem. „Mordell-Weil theorem and the rank of elliptical curves“. CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3119.

Der volle Inhalt der Quelle
Annotation:
The purpose of this thesis is to give a detailed group theoretic proof of the rank formula in a more general setting. By using the proof of Mordell-Weil theorem, a formula for the rank of the elliptical curves in certain cases over algebraic number fields can be obtained and computable.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wu, Junhua. „Geometric structures and linear codes related to conics in classical projective planes of odd orders“. Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 105 p, 2009. http://proquest.umi.com/pqdweb?did=1654490971&sid=2&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wareham, Richard James. „Computer graphics using conformal geometric algebra“. Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612753.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Geometric algebra for conics"

1

Artin, E. Geometric Algebra. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1988. http://dx.doi.org/10.1002/9781118164518.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bayro-Corrochano, Eduardo, und Gerik Scheuermann, Hrsg. Geometric Algebra Computing. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-108-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kondrat'ev, Gennadiy. Clifford Geometric Algebra. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1832489.

Der volle Inhalt der Quelle
Annotation:
The monograph is devoted to the fundamental aspects of geometric algebra and closely related issues. The category of Clifford algebras is considered as the conjugate category of vector spaces with a quadratic form. Possible constructions in this category and internal algebraic operations of an algebra with a geometric interpretation are studied. An application to the differential geometry of a Euclidean manifold based on a shape tensor is included. We consider products, coproducts and tensor products in the category of associative algebras with application to the decomposition of Clifford algebras into simple components. Spinors are introduced. Methods of matrix representation of the Clifford algebra are studied. It may be of interest to students, postgraduates and specialists in the field of mathematics, physics and cybernetics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

1960-, Zaslavskiĭ A. A., Hrsg. Geometry of conics. Providence, R.I: American Mathematical Society, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Li, Hongbo, Peter J. Olver und Gerald Sommer, Hrsg. Computer Algebra and Geometric Algebra with Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b137294.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Shifrin, Theodore. Abstract algebra: A geometric approach. Englewood Cliffs, N.J: Prentice Hall, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Geometric algebra for computer graphics. London: Springer, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hildenbrand, Dietmar. Foundations of Geometric Algebra Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Linear algebra: A geometric approach. London: Chapman & Hall, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Fontijne, D. H. F. Efficient implementation of geometric algebra. [S.l: s.n.], 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Geometric algebra for conics"

1

Hildenbrand, Dietmar. „GAALOPWeb for Conics“. In The Power of Geometric Algebra Computing, 87–100. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003139003-10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Neri, Ferrante. „An Introduction to Geometric Algebra and Conics“. In Linear Algebra for Computational Sciences and Engineering, 203–49. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21321-3_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Neri, Ferrante. „An Introduction to Geometric Algebra and Conics“. In Linear Algebra for Computational Sciences and Engineering, 159–207. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40341-0_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hitzer, Eckhard M. S. „Conic Sections and Meet Intersections in Geometric Algebra“. In Computer Algebra and Geometric Algebra with Applications, 350–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11499251_25.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Serrano Rubio, Juan Pablo, Arturo Hernández Aguirre und Rafael Herrera Guzmán. „A Conic Higher Order Neuron Based on Geometric Algebra and Its Implementation“. In Advances in Computational Intelligence, 223–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37798-3_20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gelfand, Israel M., und Alexander Shen. „Geometric progressions“. In Algebra, 81–83. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-0335-3_41.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gelfand, Israel M., und Alexander Shen. „Geometric illustrations“. In Algebra, 134–36. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-0335-3_69.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Vince, John. „Geometric Algebra“. In Mathematics for Computer Graphics, 337–72. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7336-6_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dorst, Leo. „Geometric Algebra“. In Computer Vision, 329–33. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-0-387-31439-6_656.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Xambó-Descamps, Sebastià. „Geometric Algebra“. In SpringerBriefs in Mathematics, 41–61. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00404-0_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Geometric algebra for conics"

1

Matos, S. A., C. R. Paiva und A. M. Barbosa. „Conical refraction in generalized biaxial media: A geometric algebra approach“. In IEEE EUROCON 2011 - International Conference on Computer as a Tool. IEEE, 2011. http://dx.doi.org/10.1109/eurocon.2011.5929176.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bajaj, Jasmine, und Babita Jajodia. „Squaring Technique using Vedic Mathematics“. In International Conference on Women Researchers in Electronics and Computing. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.114.75.

Der volle Inhalt der Quelle
Annotation:
Vedic Mathematics provides an interesting approach to modern computing applications by offering an edge of time and space complexities over conventional techniques. Vedic Mathematics consists of sixteen sutras and thirteen sub-sutras, to calculate problems revolving around arithmetic, algebra, geometry, calculus and conics. These sutras are specific to the decimal number system, but this can be easily applied to binary computations. This paper presented an optimised squaring technique using Karatsuba-Ofman Algorithm, and without the use of Duplex property for reduced algorithmic complexity. This work also attempts Taylor Series approximation of basic trigonometric and inverse trigonometric series. The advantage of this proposed power series approximation technique is that it provides a lower absolute mean error difference in comparison to previously existing approximation techniques.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Li, Wanzhen, Tao Sun, Xinming Huo und Yimin Song. „CGA Approach to Kinematic Analysis of a 2-DoF Parallel Positioning Mechanism“. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60529.

Der volle Inhalt der Quelle
Annotation:
This paper proposes CGA based approach to determine motions and constraints, analyze mobility, identify singularity of parallel mechanisms, which is perfectly demonstrated by taking 3-RSR&SS parallel positioning mechanism as an example. By introducing CGA, which combining elements of geometry and algebra, the motions and constraints are expressed as simple formulas and their relations are calculated by means of outer product with clear physical meaning, these lead to the motions and constraints are determined in a visual, concise and efficient way, and the number and type of DoF and accessible motions are obtained readily. The inverse and forward position solutions are obtained easily utilizing special geometric relations of 3-RSR&SS parallel positioning mechanism, which are proven by calculating relations among point, line and plane in virtue of CGA operation rules. Two indices of singularity are defined to identify singular configurations of 3-RSR&SS parallel positioning mechanism in the light of the shuffle and outer products. The work of this paper lay a solid theoretical and technical foundation for the prototype design and manufacture of 3-RSR&SS parallel positioning mechanism.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Li, Hongbo. „Automated Geometric Reasoning with Geometric Algebra“. In ISSAC '17: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3087604.3087663.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zambo, Samantha. „Defining geometric algebra semantics“. In the 48th Annual Southeast Regional Conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1900008.1900157.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hildenbrand, Dietmar. „Foundations of Geometric Algebra computing“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756054.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Qing, Ni, und Wang Zhengzhi. „Geometric invariants using geometry algebra“. In 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering (CCIE 2011). IEEE, 2011. http://dx.doi.org/10.1109/ccieng.2011.6008094.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gunn, Charles G., und Steven De Keninck. „Geometric algebra and computer graphics“. In SIGGRAPH '19: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3305366.3328099.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Reisossadat, S. H. R., F. Kheirandish, H. Pahlavani, S. Salehi, Piotr Kielanowski, Anatol Odzijewicz, Martin Schlichenmaier und Theodore Voronov. „Realization of a deformed parafermionic algebra“. In GEOMETRIC METHODS IN PHYSICS. AIP, 2008. http://dx.doi.org/10.1063/1.3043848.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Altamirano-Gomez, Gerardo, und Eduardo Bayro-Corrochano. „Conformal Geometric Algebra method for detection of geometric primitives“. In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7900291.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Geometric algebra for conics"

1

Bashelor, Andrew Clark. Enumerative Algebraic Geometry: Counting Conics. Fort Belvoir, VA: Defense Technical Information Center, Mai 2005. http://dx.doi.org/10.21236/ada437184.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hanlon, J., und H. Ziock. Using geometric algebra to study optical aberrations. Office of Scientific and Technical Information (OSTI), Mai 1997. http://dx.doi.org/10.2172/468621.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Meisel, L. V. A Mathematica Formulation of Geometric Algebra in 3-Space. Fort Belvoir, VA: Defense Technical Information Center, März 1995. http://dx.doi.org/10.21236/ada295512.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hanlon, J., und H. Ziock. Using geometric algebra to understand pattern rotations in multiple mirror optical systems. Office of Scientific and Technical Information (OSTI), Mai 1997. http://dx.doi.org/10.2172/468622.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yanovski, Alexandar B. Geometric Interpretation of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Lie Algebra $A_2$. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-23-2011-97-111.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie