Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Geology, Structural South Australia Flinders Ranges“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Geology, Structural South Australia Flinders Ranges" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Geology, Structural South Australia Flinders Ranges"
Groves, I. M., C. E. Carman und W. J. Dunlap. „Geology of the Beltana Willemite Deposit, Flinders Ranges, South Australia“. Economic Geology 98, Nr. 4 (01.06.2003): 797–818. http://dx.doi.org/10.2113/gsecongeo.98.4.797.
Der volle Inhalt der QuelleBetts, Marissa J., Timothy P. Topper, James L. Valentine, Christian B. Skovsted, John R. Paterson und Glenn A. Brock. „A new early Cambrian bradoriid (Arthropoda) assemblage from the northern Flinders Ranges, South Australia“. Gondwana Research 25, Nr. 1 (Januar 2014): 420–37. http://dx.doi.org/10.1016/j.gr.2013.05.007.
Der volle Inhalt der QuelleEickhoff, K. H., C. C. Von Der Borch und A. E. Grady. „Proterozoic canyons of the Flinders Ranges (South Australia): submarine canyons or drowned river valleys?“ Sedimentary Geology 58, Nr. 2-4 (August 1988): 217–35. http://dx.doi.org/10.1016/0037-0738(88)90070-x.
Der volle Inhalt der QuelleThomas, Matilda, Jonathan D. A. Clarke, Victor A. Gostin, George E. Williams und Malcolm R. Walter. „The Flinders Ranges and surrounds, South Australia: a window on astrobiology and planetary geology“. Episodes 35, Nr. 1 (01.03.2012): 226–35. http://dx.doi.org/10.18814/epiiugs/2012/v35i1/022.
Der volle Inhalt der QuelleSandiford, Mike, Eike Paul und Thomas Flottmann. „Sedimentary thickness variations and deformation intensity during basin inversion in the Flinders Ranges, South Australia“. Journal of Structural Geology 20, Nr. 12 (Dezember 1998): 1721–31. http://dx.doi.org/10.1016/s0191-8141(98)00088-1.
Der volle Inhalt der QuelleBrugger, Joël, Ngaire Long, D. C. McPhail und Ian Plimer. „An active amagmatic hydrothermal system: The Paralana hot springs, Northern Flinders Ranges, South Australia“. Chemical Geology 222, Nr. 1-2 (Oktober 2005): 35–64. http://dx.doi.org/10.1016/j.chemgeo.2005.06.007.
Der volle Inhalt der QuelleLubiniecki, D. C., R. C. King, S. P. Holford, M. A. Bunch, S. B. Hore und S. M. Hill. „Cenozoic structural evolution of the Mount Lofty Ranges and Flinders Ranges, South Australia, constrained by analysis of deformation bands“. Australian Journal of Earth Sciences 67, Nr. 8 (09.02.2020): 1097–115. http://dx.doi.org/10.1080/08120099.2019.1695227.
Der volle Inhalt der QuelleVidal‐Royo, Oskar, Mark G. Rowan, Oriol Ferrer, Mark P. Fischer, J. Carl Fiduk, David P. Canova, Thomas E. Hearon und Katherine A. Giles. „The transition from salt diapir to weld and thrust: Examples from the Northern Flinders Ranges in South Australia“. Basin Research 33, Nr. 5 (23.06.2021): 2675–705. http://dx.doi.org/10.1111/bre.12579.
Der volle Inhalt der QuelleCounts, John W., und Kathryn J. Amos. „Sedimentology, depositional environments and significance of an Ediacaran salt-withdrawal minibasin, Billy Springs Formation, Flinders Ranges, South Australia“. Sedimentology 63, Nr. 5 (01.04.2016): 1084–123. http://dx.doi.org/10.1111/sed.12250.
Der volle Inhalt der QuelleMcMahon, William J., Alexander G. Liu, Benjamin H. Tindal und Maarten G. Kleinhans. „Ediacaran life close to land: Coastal and shoreface habitats of the Ediacaran macrobiota, the Central Flinders Ranges, South Australia“. Journal of Sedimentary Research 90, Nr. 11 (30.11.2020): 1463–99. http://dx.doi.org/10.2110/jsr.2020.029.
Der volle Inhalt der QuelleDissertationen zum Thema "Geology, Structural South Australia Flinders Ranges"
Mendis, Premalal J. „The origin of the geological structures, diapirs, grabens, and barite veins in the Flinders Ranges, South Australia“. Title page, abstract and contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phm5389.pdf.
Der volle Inhalt der QuelleGregory, Christopher T. „The geology and origin of sedimentary manganese from the Boolcunda, Etna and Muttabee Deposits, central Flinders Ranges, South Australia /“. Title page, table of contents and abstract only, 1988. http://web4.library.adelaide.edu.au/theses/09SB/09sbg822.pdf.
Der volle Inhalt der QuelleSingh, Updesh. „Late Precambrian and Cambrian carbonates of the Adelaidean in the Flinders Ranges, South Australia : a petrographic, electron microprobe and stable isotope study /“. Title page, abstract and contents only, 1986. http://web4.library.adelaide.edu.au/theses/09PH/09phs1792.pdf.
Der volle Inhalt der QuelleHearon, IV Thomas E. „Analysis of salt-sediment interaction associated with steep diapirs and allochthonous salt| Flinders and willouran ranges, south australia, and the deepwater northern gulf of Mexico“. Thesis, Colorado School of Mines, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3602617.
Der volle Inhalt der QuelleThe eastern Willouran Ranges and northern Flinders Ranges, South Australia contain Neoproterozoic and Cambrian outcrop exposures of diapiric breccia contained in salt diapirs, salt sheets and associated growth strata that provide a natural laboratory for testing and refining models of salt-sediment interaction, specifically allochthonous salt initiation and emplacement and halokinetic deformation. Allochthonous salt, which is defined as a sheet-like diapir of mobile evaporite emplaced at younger stratigraphic levels above the autochthonous source, is emplaced due to the interplay between the rate of salt supply to the front of the sheet and the sediment-accumulation rate, and may be flanked by low- to high-angle stratal truncations to halokinetic folds. Halokinetic sequences (HS) are localized (<1000 m) unconformity-bound successions of growth strata adjacent to salt diapirs that form as drape folds due to the interplay between salt rise rate (R) and sediment accumulation rate (A). HS stack to form tabular and tapered composite halokinetic sequences (CHS), which have narrow and broad zones of thinning, respectively. The concepts of CHS formation are derived from outcrops in shallow water to subaerial depositional environments in La Popa Basin, Mexico and the Flinders Ranges, South Australia. Current models for allochthonous salt emplacement, including surficial glacial flow, advance above subsalt shear zones and emplacement along tip thrusts, do not address how salt transitions from steep feeders to low-angle sheets and the model for the formation of halokinetic sequences has yet to be fully applied or tested in a deepwater setting. Thus, this study integrates field data from South Australia with subsurface data from the northern Gulf of Mexico to test the following: (1) current models of allochthonous salt advance and subsalt deformation using structural analysis of stratal truncations adjacent to outcropping salt bodies, with a focus on the transition from steep diapirs to shallow salt sheets in South Australia; and (2) the outcrop-based halokinetic sequence model using seismic and well data from the Auger diapir, located in the deepwater northern Gulf of Mexico. Structural analysis of strata flanking steep diapirs and allochthonous salt in South Australia reveals the transition from steep diapirs to shallowly-dipping salt sheets to be abrupt and involves piston-like breakthrough of roof strata, freeing up salt to flow laterally. Two models explain this transition: 1) salt-top breakout, where salt rise occurs inboard of the salt flank, thereby preserving part of the roof beneath the sheet; and 2) salt-edge breakout, where rise occurs at the edge of the diapir with no roof preservation. Shear zones, fractured or mixed `rubble zones' and thrust imbricates are absent in strata beneath allochthonous salt and adjacent to steep diapirs. Rather, halokinetic drape folds, truncated roof strata and low- and high-angle bedding intersections are among the variety of stratal truncations adjacent to salt bodies in South Australia. Interpretation and analysis of subsurface data around the Auger diapir reveals similar CHS geometries, stacking patterns and ratios of salt rise and sediment accumulation rates, all of which generally corroborate the halokinetic sequence model. The results of this study have important implications for salt-sediment interaction, but are also critical to understanding and predicting combined structural-stratigraphic trap geometry, reservoir prediction and hydrocarbon containment in diapir-flank settings.
Yassaghi, Ali. „Geometry, kinematics, microstructure, strain analysis, and P-T conditions of the shear zones and associated ductile thrusts in the southern Mt. Lofty Ranges/Adelaide Hills area, South Australia /“. Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phy29.pdf.
Der volle Inhalt der QuelleMendis, Premalal J., Primary Industries and Resources SA Parachilna [cartographic material] und Mines and Energy South Australia Geology of the Flinders Ranges National Park [cartographic material]. „The origin of the geological structures, diapirs, grabens, and barite veins in the Flinders Ranges, South Australia / by Premalal J. Mendis“. 2002. http://hdl.handle.net/2440/21925.
Der volle Inhalt der Quelle155, [156-184] leaves : ill. (some col.), maps (some col.) ; 30 cm. + 2 maps in back pocket
Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
Thesis (Ph.D.)--University of Adelaide, Dept. of Geology and Geophysics, 2003
Wulser, Pierre-Alain. „Uranium metallogeny in the North Flinders Ranges region of South Australia“. 2009. http://hdl.handle.net/2440/57970.
Der volle Inhalt der Quellehttp://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1370301
Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2009
Tokarev, Victor. „Neotectonics of the Mount Lofty Ranges (South Australia) / Victor Tokarev“. 2005. http://hdl.handle.net/2440/22225.
Der volle Inhalt der QuelleBibliography: leaves 259-272.
ix, 272 leaves : ill. (some col.), maps (col.), plates (col.) ; 30 cm.
Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
"The Mount Lofty Ranges and flanking St Vincent and Western Murray Basins preserve a rich record of Australian intraplate neotectonic movements and their effects of landscape evolution and sedimentary basin development in this region of South Australia." "The major goal of this study is to develop a new tectonic model that contributes to our fundamental understanding of how neotectonic motions and deformations operate within this sector of the southern Australian Earth crust. The other main aim of this thesis is to provide a better understanding of the effects those neotectonic movements imposed on landscape evolution and sedimentation." --Introd.
Thesis (Ph.D.)--University of Adelaide, Faculty of Science, School of Earth and Environmental Sciences, Discipline of Geology and Geophysics, 2005
Bücher zum Thema "Geology, Structural South Australia Flinders Ranges"
Selby, J. Corridors through time: The geology of the Flinders Ranges, South Australia. Netley, S. Australia: State Publishing, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Geology, Structural South Australia Flinders Ranges"
Dyson, Ian A., und Mark G. Rowan. „Geology of a Welded Diapir and Flanking Mini-Basins in the Flinders Ranges of South Australia“. In Salt Sediment Interactions and Hydrocarbon Prospectivity: Concepts, Applications, and Case Studies for the 21st Century: 24th Annual, 69–89. SOCIETY OF ECONOMIC PALEONTOLOGISTS AND MINERALOGISTS, 2004. http://dx.doi.org/10.5724/gcs.04.24.0069.
Der volle Inhalt der Quelle