Dissertationen zum Thema „Geology, Stratigraphic Proterozoic“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Geology, Stratigraphic Proterozoic" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Strauss, Toby Anthony Lavery. „The geology of the Proterozoic Haveri Au-Cu deposit, Southern Finland“. Thesis, Rhodes University, 2004. http://hdl.handle.net/10962/d1015978.
Der volle Inhalt der QuelleLi, Longming, und 李龙明. „The crustal evolutionary history of the Cathaysia Block from the paleoproterozoic to mesozoic“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45693596.
Der volle Inhalt der QuelleBaldim, Maurício Rigoni 1983. „O domo gnáissico Alto Alegre, transição embasamento-greenstone belt do Rio Itapicuru : evolução e significado tectônico“. [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/286596.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Geociências
Made available in DSpace on 2018-08-26T10:50:20Z (GMT). No. of bitstreams: 1 Baldim_MauricioRigoni_M.pdf: 19163752 bytes, checksum: da3d83e0ed883c0984d79ed906f0528c (MD5) Previous issue date: 2014
Resumo: Domos gnáissicos são estruturas que podem estar associadas tanto aos orógenos extensionais quanto aos colisionais. Em orógenos colisionais, normalmente balizam os distintos terrenos dispondo-se em corredores estruturais. Na região nordeste do Cráton São Francisco, Bloco Serrinha, localiza-se o Greenstone Belt Paleoproterozoico do Rio Itapicuru, interpretado como arco continental acrecionado a um Complexo de alto grau mesoarqueano. Mapeamento geológico realizado no segmento norte da transiçao, embasamento-greenstone, revelou a ocorrência de um domo gnáissico-migmatítico que limita dois terrenos, um arqueano e outro paleoproterozoico, que destoa litoestruturalmente de outros domos reconhecidos a sul do greenstone (e.g. domos do Ambrósio, Salgadália e Pedra Alta). Além disso, dados estruturais mostram que a evolução tectônica da área ocorreu a partir de tectônica compressiva em D1 com direção E-W, seguido de transcorrência N-S em D2, possivelmente associados a transpressão. O domo, denominado Alto Alegre, possui núcleo granito-diatexítico, sendo delineado por faixas anfibolíticas concêntricas e preserva paragênese de alto grau metamórfico. Análises de elementos maiores e traços revelam que as faixas de anfibolitos do referido domo possuem características geoquímicas semelhantes aos diques máficos que cortam o embasamento, e destoam dos basaltos toleíticos do greenstone belt. Dados geocronológicos e de campo revelam idades de ca. 3080 Ma para o embasamento arqueano e para gnaisses do domo Alto Alegre, e idades de ca. 2080 Ma para o granito que intrude a porção central do domo. Os dados mostram que o domo Alto Alegre representa o embasamento arqueano retrabalhado tectonicamente e influenciado por atividade granítica, durante colisão continente-continente em ca. 2080 Ma
Abstract: Gneiss domes are structures that may be associated with both extensional and collisional orogens. In collisional orogens typically delimit distinct land forming structural corridors. In northeastern of São Francisco craton, Serrinha Block, is located the Paleoproterozoic Rio Itapicuru Greenstone Belt which is interpreted as a continental arc acrecionado to a Mesoarqueano high degree Complex. Geological mapping carried out in the northern segment of the greenstone-basement transition, revealed the occurrence of a gneissic-migmatitic dome that limits two lands, one Archean and another Paleoproterozoic. This dome is different both on litology as structuraly when comparing with other domes recognized in a south of the greenstone (e.g., domes of Ambrose, Salgadália and Pedra Alta). Furthermore, structural data show that the tectonic evolution of the area occurred from compressive tectonics E-W in D1, followed by transcurrent N-S in D2, possibly associated with transpression. The dome, called Alto Alegre, has granite-diatexítico core being outlined by concentric amphibolitic bands that preserves high metamorphic grade paragenesis. Results of major and trace elements analyzes reveal that the amphibolites bands of dome has geochemical characteristics similar to mafic dikes that cut the basement, and differ from Rio Itapicuru greenstone belt basalts. Geochronological and field data reveal ages ca. 3080 Ma for the Archean basement and the dome Alto Alegre gneisses, and ages of ca 2080 Ma for the granite that intrude the central portion of the dome. The data show that the dome Alto Alegre represents the tectonically reworked Archean basement and influenced by granite activity during continent-continent collision at ca 2080 Ma
Mestrado
Geologia e Recursos Naturais
Mestre em Geociências
Baghiyan-Yazd, Mohammad Hassan. „Palaeoichnology of the terminal Proterozoic-Early Cambrian transition in central Australia : interregional correlation and palaeoecology“. Title page, table of contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phb1445.pdf.
Der volle Inhalt der QuelleJohnson, Shannon D. „Structural geology of the Usakos Dome in the Damara Belt, Namibia“. Thesis, Stellenbosch : Stellenbosch University, 2005. http://hdl.handle.net/10019.1/50457.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The northeast-trending south Central Zone (sCZ) of the Pan-African Damara belt in central Namibia is structurally characterized by kilometer-scale, northeast-trending dome structures developed in Neoproterozoic rocks of the Damara Sequence. A number of different structural models have been proposed for the formation of these domes in the literature. This study describes the structural geology of the Usakos dome. The study discusses the structural evolution of the dome within the regional framework of the cSZ that represents the high-grade metamorphic axis of the Damara Belt, characterized by voluminous Pan-African granitoids. The northeastern part of the Usakos dome is developed as an upright- to northwestverging anticlinorium containing a steep southeasterly-dipping axial planar foliation. The northeast fold trend persists into the southwestern parts of the Usakos dome. However, this southwestern core of the dome is inundated by synkinematic granitic sheets. Distinct marker horizons of the Damara Sequence outcrop as screens within the granite, preserving a ghost stratigraphy. These screens illustrate the position and orientation of second-order folds. Significantly, most of the stratigraphy of the Damara Sequence is overturned in these folds. For example, some second-order anticlines developed in the northeastern parts of the Usakos dome can be followed along their axial traces into the southwestern hinge of the dome, where they appear as synformal anticlines, i.e. synformal structures cored by older strata, plunging towards the northeast. The inverted stratigraphy and northeasterly fold plunges suggest the northeast-trending folds are refolded by second-generation, northwest-trending folds, thus, forming kilometer-scale Type-2 interference folds. The resulting fold geometries are strongly non-cylindrical, approaching southwest-closing sheath folds indicating a top-to-the-southwest material transport. Lower-order folds in this overturned domain show radial fold plunges, plunging away from the centre of the dome core, as well as a shallowly-dipping schistosity. The close spatial and temporal relationship between granite intrusion and the formation of the southwest-vergent, sheath-type folds, radial distribution of fold plunges and the subhorizontal foliation confined to the southwestern hinge of the Usakos dome are interpreted to signify the rheological weakening and ensuing collapse of the developing first-order Usakos dome immediately above the synkinematic granite intrusions. Orogenparallel, southwest-vergent sheath folds and top-to-the southwest extrusion of the southwestern parts of the Usakos dome and northwest-vergent folding and thrusting characterizing the northeastern extent of the Usakos dome are both responses to the northwest-southeast- directed contractional tectonics recorded during the main collisional phase in the Damara belt. On a regional scale, the Usakos dome represents the link between the foreland-vergent northeastern part of the sCZ and the southwest-vergent, high-grade southwestern parts of the sCZ. The results of this study illustrate how dramatic variations in structural styles may be caused by the localized and transient rheological weakening of the crust during plutonic activity.
AFRIKAANSE OPSOMMING: Die noordoos-strekkende, suidelike Sentrale Sone (sSS) van die Pan-Afrikaanse Damara gordel in sentraal Namibië word karakteriseer deur kilometer-skaal, noordoosstrekkende koepel strukture, ontwikkel in die Neoproterozoïkum gesteentes van die Damara Opeenvolging. 'n Aantal verskillende struktuur modelle is voorgestel in die literatuur vir die vorming van hierdie koepels. Hierdie ondersoek beskryf die struktuur geologie van die Usakos koepel. Die ondersoek bespreek die strukturele ontwikkeling van die koepel in die regionale konteks van die sSS, wat die hoë graadse metamorfe magmatiese as van die Damara Gordel verteenwoordig, en karakteriseer word deur omvangryke Pan-Afrikaanse granitoïede. Die noordoostelike gedeelte van die Usakos koepel is ontwikkel as 'n antiklinorium met 'n vertikale- tot noordwestelike kantelrigting. wat 'n steil hellende, suidoostelike asvlak planêre foliasie bevat. Die noordoos-strekkende plooiing kom voor tot in die suidwestelike kern van die Usakos wat ingedring is deur sinkinematiese granitiese plate. Die posisie en oriëntasie van tweede-orde plooie is afgebeeld in die graniete deur 'n skimstratigrafie wat preserveer is deur duidelike merker horisonne van die Damara Opeenvolging. Die stratigrafie van die Damara Opeenvolging is opmerklik meestal omgekeer in hierdie plooie. Byvoorbeeld, tweede-orde antikliene ontwikkel in die noordoostelike gedeelte van die Usakos koepel kan gevolg word langs hul asvlakspore tot in die suidwestelike skarnier van die koepel, waar dit voorkom as sinforme antikliene, d.w.s. sinforme strukture met ouer strata in die kern wat na die noordooste duik. Die omgekeerde stratigrafie en noordoostelike plooi duiking impliseer dat die noordoosstrekkende plooie weer geplooi is deur tweede-generasie, noordwes-strekkende plooie, wat dus aanleiding gegee het tot die vorming van kilometer-skaal, tipe-2 interferensie plooie. Die gevolglike plooi geometrieë is uitdruklik nie-silindries, en toon 'n oorgang na skede plooie met 'n sluiting na die suidweste, wat dui op 'n bokant-na-die-suidweste materiaal vervoer. Laer-orde plooie in die omgekeerde domein vertoon radiale duiking van die plooie, weg van die middelpunt van die koepel kern, sowel as 'n vlak hellende skistositeit. Die noue ruimtelike en temporele verwantskap tussen graniet intrusie en die vorming van skede-tipe plooie met 'n kantelrigting na die suidweste, die radiale verspreiding van plooi duiking, en die subhorisontale foliasie wat beperk is tot die suidwestelike skarnier van die Usakos koepel, word interpreteer as 'n aanduiding van die reologiese verswakking en die gevolglike ineenstorting van die ontwikkelende eerste-orde Usakos koepel, onmiddellik aan die bokant van die sinkinematiese graniet intrusies. Die orogeenparalleie skede plooie met kantelrigting na die suidweste en bokant-na-die-suidweste ekstrusie van die suidwestelike gedeelte van die Usakos koepel, en plooiing met kantelrigting na die noordweste en stootverskuiwing wat kenmerkend is van die noordoostelike gedeelte van die Usakos koepel, is beide 'n reaksie op die noordwessuidoos- gerigte vernouings tektoniek opgeteken gedurende die hoof botsings fase in die Damara gordel. Op 'n regionale skaal verteenwoordig die Usakos koepel die verbinding tussen die noordoostelike gedeelte van die sSS met 'n voorland kantelrigting. en die hoë graad suidwestelike gedeelte van die sSS met 'n kantelrigting na die suidweste. Die resultate van hierdie ondersoek toon aan hoe dramatiese variasies in struktuur style veroorsaak kan word deur die gelokaliseerde en kortstondige reologiese verswakking van die kors gedurende plutoniese aktiwiteit.
Zhao, Junhong, und 趙軍紅. „Geochemistry of neoproterozoic arc-related plutons in the Western margin of the Yangtze Block, South China“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40203748.
Der volle Inhalt der QuelleWang, Wei, und 王伟. „Sedimentology, geochronology and geochemistry of the proterozoic sedimentary rocks in the Yangtze Block, South China“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/196033.
Der volle Inhalt der Quellepublished_or_final_version
Earth Sciences
Doctoral
Doctor of Philosophy
Harris, Charles William. „A sedimentological and structural analysis of the Proterozoic Uncompahgre Group, Needle Mountains, Colorado“. Diss., Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/79644.
Der volle Inhalt der QuellePh. D.
Hill, Robert E. (Robert Einar). „Stratigraphy and sedimentology of the Middle Proterozoic Waterton and Altyn Formations, Belt-Purcell Supergroup, southwest Alberta“. Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63330.
Der volle Inhalt der QuelleGibson, R. G. „Structural studies in a Proterozoic gneiss complex and adjacent cover rocks, west Needle Mountains, Colorado“. Diss., Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/76096.
Der volle Inhalt der QuellePh. D.
Allen, Rosemary. „Relationship of thermal evolution to tectonic processes in a proterozoic fold belt : Halls Creek Mobile Zone, East Kimberley, West Australia /“. Title page, contents and introduction only, 1986. http://web4.library.adelaide.edu.au/theses/09PH/09pha4288.pdf.
Der volle Inhalt der QuelleSun, Weihua, und 孙卫华. „The neoproterozoic Yanbian group and associated plutons in the westernYangtze block, SW China“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B41897158.
Der volle Inhalt der QuelleTeitz, Martin W. „Late proterozoic Yellowhead and Astoria Carbonate Platforms, southwest of Jasper, Alberta“. Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63371.
Der volle Inhalt der QuelleSimpson, Edward L. „Sedimentology and tectonic implications of the Late Proterozoic to Early Cambrian Chilhowee Group in southern and central Virginia“. Diss., Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/53660.
Der volle Inhalt der QuellePh. D.
Swift, Peter Norton. „EARLY PROTEROZOIC TURBIDITE DEPOSITION AND MELANGE DEFORMATION, SOUTHEASTERN ARIZONA“. Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/187544.
Der volle Inhalt der QuelleHaines, Peter W. „Carbonate shelf and basin sedimentation, late Proterozoic Wonoka Formation, South Australia /“. Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09PH/09phh152.pdf.
Der volle Inhalt der QuelleLane, Robert Andrew. „Geologic setting and petrology of the Proterozoic Ogilvie Mountains breccia of the Coal Creek inlier, southern Ogilvie Mountains, Yukon Territory“. Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29196.
Der volle Inhalt der QuelleScience, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
Stewart, Kathryn. „High temperature felsic volcanism and the role of mantle magmas in proterozoic crustal growth : the Gawler Range volcanic province /“. Title page, contents and abstract only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phs8488.pdf.
Der volle Inhalt der QuelleCrowley, James L. Carleton University Dissertation Earth Sciences. „U-Pb geochronology in Frenchman Cap dome of the Monashee complex, southern Canadian Cordillera; early Tertiary tectonic overprint of a Proterozoic history“. Ottawa, 1997.
Den vollen Inhalt der Quelle findenZhao, Jian-xin. „The geology, geochemistry and geochronology of the Atnarpa Igneous Complex, SE Arunta Inlier, northern Australia : implications for early to middle proterozoic tectonism and crustal evolution“. Title page, contents and abstract only, 1989. http://web4.library.adelaide.edu.au/theses/09SM/09smz63.pdf.
Der volle Inhalt der QuelleBooth, Peter William King. „Pan-African imprint on the early mid-proterozoic Richtersveld and Bushmanland sub-provinces near Eksteenfontein, Namaqualand, Republic of South Africa“. Doctoral thesis, University of Cape Town, 1990. http://hdl.handle.net/11427/26232.
Der volle Inhalt der QuelleMoodley, Jason Anthony. „Petrogenesis of the Bysteek and Koenap Formation Migmatites, Central Namaqualand“. Thesis, Rhodes University, 2013. http://hdl.handle.net/10962/d1001574.
Der volle Inhalt der QuelleBendall, Betina. „Mid-Palaeozoic shear zones in the Strangways Range : a record of intracratonic tectonism in the Arunta Inlier, Central Australia“. Title page, contents and introduction only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phb458.pdf.
Der volle Inhalt der QuelleHe, Yanhong, und 何艷紅. „Ages and geochemistry of the Xiong'er volcanic rocks along the southern margin of the North China Craton: implications for the outgrowths of the paleo-mesoproterozoicsupercontinent Columbia (Nuna)“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B4163424X.
Der volle Inhalt der QuelleGreentree, Matthew Richard. „Tectonostratigraphic analysis of the Proterozoic Kangdian iron oxide - copper province, South-West China“. University of Western Australia. Tectonics Special Research Centre, 2007. http://theses.library.uwa.edu.au/adt-WU2009.0054.
Der volle Inhalt der QuelleVallini, Daniela Alessandra. „The formation of authigenic xenotime in Proterozoic sedimentary basins : petrography, age and geochemistry“. University of Western Australia. Geology and Geophysics Discipline Group, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0070.
Der volle Inhalt der QuelleMuller, Stefan G. „The tectonic evolution and volcanism of the Lower Wyloo Group, Ashburton Province, with timing implications for giant iron-ore deposits of the Hamersley Province, Western Australia“. University of Western Australia. School of Earth and Geographical Sciences, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0043.
Der volle Inhalt der QuelleBeard, Linda Sue. „Precambrian Geology of the Cottonwood Cliffs Area, Mohave County, Arizona“. Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/244095.
Der volle Inhalt der QuellePolteau, Stéphane. „The early proterozoic Makganyene glacial event in South Africa : its implication in sequence stratigraphy interpretations, paleoenvironmental conditions and iron and manganese ore deposition“. Thesis, Rhodes University, 2005. http://hdl.handle.net/10962/d1007612.
Der volle Inhalt der QuelleSener, A. K. „Characteristics, distribution and timing of gold mineralisation in the Pine Creek Orogen, Northern Territory, Australia“. University of Western Australia. Centre for Global Metallogeny, 2005. http://theses.library.uwa.edu.au/adt-WU2005.0102.
Der volle Inhalt der QuelleBerger, Julien. „Les associations de roches basiques - ultrabasiques néoprotérozoïques d'Amalaoulou (Gourma, Mali), du Tassendjanet (Hoggar occidental, Algérie) et cénozoïques du Saghro (Anti-Atlas, Maroc): témoins de l'évolution géodynamique de la ceinture péri-cratonique ouest-africaine“. Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210499.
Der volle Inhalt der QuelleLe massif d’Amalaoulaou (Gourma, Mali) est interprété comme la racine d’un arc intra-océanique ayant enregistré la mise en place de magmas basiques (unité des métagabbros) à un stade immature de l’évolution de l’arc (subduction naissante) vers 800-790 Ma. Les gabbros quartziques (~720 Ma) et les gabbros à hornblende de l’unité supérieure ont des signatures de magmas d’arc plus franche, témoins d’une source mantellique plus enrichie par l’apport de la plaque océanique plongeante. Les métagabbros sont ensuite affectés par une recristallisation et localement par une anatexie en conditions du faciès granulitique. De nombreuses veines leucocrates se développent à ce stade, ce sont principalement des anorthosites et des tonalites (mises en place vers 660 Ma) provenant de la fusion partielle des métagabbros (850°C-1000°C, P>10 kbar). Cette fusion génère également des résidus denses à grenat-clinopyroxène-rutile, associations fréquemment présentes dans les racines d’arcs plus récents et reflétant la maturation de l’arc. L’arc d’Amalaoulaou est ensuite exhumé et charrié sur le craton ouest-africain dans des conditions de basse température et moyenne pression (550°C, 6-9 kbar), probablement au même moment que l’exhumation des éclogites du Gourma (~620 Ma).
L ‘épisode de subduction océanique est suivi par la subduction continentale dans le Gourma et le Hoggar occidental. Les éclogites/amphibolites de Tiléouine et Tin Zebbane (Hoggar occidental) sont des métabasaltes tholéiitiques enrichis et alcalins intracontinentaux ayant plongé à 60 km de profondeur (600°C, 17 kbar) lors de la subduction d’une partie du terrane du Tassendjanet. Même si la nature géochimique du protolithe est encore reconnaissable, ces métabasaltes ont subi une différenciation chimique lors de la recristallisation à haute pression par interaction avec les fluides issus de la déshydratation des métasédiments. L’exhumation (615-600 Ma) se fait relativement lentement, ce qui induit un rééquilibrage thermique (750°C, ~10 kbar) avant l’exhumation à basse température (660 °C, 7-8 kbar) précédant de peu voire synchrone à la phase collisionnelle.
L’intrusion basique-ultrabasique de Tiléouine marque la fin de la collision panafricaine dans le Hoggar occidental (600-590 Ma). C’est une ancienne chambre magmatique différenciée, mise en place entre 10 et 20 km de profondeur, et montrant une évolution magmatique depuis des cumulats ultramafiques riches en olivine, spinelle et pyroxène vers des gabbros riches en plagioclase. Le magma parental est d’affinité tholéiitique enrichie et tire probablement sa source de la lithosphère sous-continentale. La mise en place de cette intrusion est contemporaine d’un contexte tectonique transtensif induisant un amincissement lithosphérique au niveau du Tassendjanet.
Cette suture péri-cratonique est réactivée au Cénozoïque, lors de la convergence Afrique-Europe, ce qui se marque par la mise en place de laves alcalines, notamment dans l'Est de l’Anti-Atlas marocain (Saghro :10-3 Ma). Les néphélinites du Saghro sont issues de faibles taux de fusion partielle d’une source mantellique contenant un composant HIMU et localisée à la limite asthénosphère/lithosphère (70-100 km sous l’Anti-Atlas). La cristallisation fractionnée de ces magmas génère des phonolites, par fractionnement de feldspath, néphéline, apatite et sphène, principalement. L’étape finale de différenciation se marque par la formation de phases peu communes comme la hainite et la lorenzenite. Ces magmas se sont mis en place à la faveur de fentes de tension et de fractures ouvertes ayant la même orientation que la contrainte principale au Mio-Pliocène.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Land, Jarred. „Genesis of BIF-hosted hematite iron ore deposits in the central part of the Maremane anticline, Northern Cape Province, South Africa“. Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1020905.
Der volle Inhalt der QuelleZhao, Xinfu, und 赵新福. „Paleoproterozoic crustal evolution and Fe-Cu metallogeny of the western Yangtze Block, SW China“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B43572261.
Der volle Inhalt der QuelleRafuza, Sipesihle. „Carbonate petrography and geochemistry of BIF of the Transvaal supergroup : evaluating the potential of iron carbonates as proxies for palaeoproterozoic ocean chemistry“. Thesis, Rhodes University, 2015. http://hdl.handle.net/10962/d1018611.
Der volle Inhalt der QuelleAnderson, Alvin D. „Geology of the Phil Pico Mountain Quadrangle, Daggett County, Utah, and Sweetwater County, Wyoming“. Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2384.pdf.
Der volle Inhalt der QuelleVon, Veh Mark Wolter. „The stratigraphy and structural evolution of the late Proterozoic Gariep belt in the Sendelingsdrif-Annisfontein area, northwestern Cape Province“. Doctoral thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/17695.
Der volle Inhalt der QuelleA geological investigation of the Port Nolloth metasediments in the central external parts of the Gariep Beit has led to a re-interpretation of tbeir lithostratigraphy and Pan-African geotectonic evolution. During the rifting stage of passive continental margin evolution, the basal elastic Stinkfontein Sequence was deposited in an alluvial fan environment. Fluviatile conglomerates and quartz arenites (Lekkersing Formation) interfinger with feldspathic arenites and minor volcanics (Vredefontein Formation), and prograde into marginal marine elastics and carbonates (Gumchavib Formation). Rift faulting produced local grabens into which massflow sediments (Kaigas Formation) and volcaniclastics (Rosh Pinah Formation) were shed. During the sea-floor spreading stage, a shallow-water carbonateclastic unit, the Hilda Sequence, was deposited. Conglomerates, quartzites, and schists with resedimented gravity-flow characteristics (Wallekraal Formation) are sandwiched between lower and upper platform carbonates (Pickelhaube and Dabie River Formations). The Hilda is unconformably overlain by the Numees Sequence, consisting of a widespread glaciogenic diamictite (Sendelingsdrif Formation) and a near-basal banded iron formation (Jakkalsberg Formation). A deep-water elastic unit, the Holgat Sequence, was laid down during the early stage of the lower Nama transgression.
Mengel, Flemming Cai. „Thermotectonic evolution of the Proterozoic-Archaean boundary in the Saglek area, northern Labrador /“. 1987. http://collections.mun.ca/u?/theses,91862.
Der volle Inhalt der QuelleHill, Catherine Mary. „Experimental constraints on crustal contamination in Proterozoic anorthosite petrogenesis“. Thesis, 2017. http://hdl.handle.net/10539/23584.
Der volle Inhalt der QuelleMassif-type anorthosites formed in the Proterozoic Eon are the most voluminous anorthosite occurrences on Earth, reaching tens of thousands of square kilometers in aerial extent. While they formed throughout the Proterozoic, most formed during a 700 Ma period between 1800 and 1100 Ma. The rocks are dominated by plagioclase (typically 70 – 95 volume %) of intermediate composition (An40-65). Olivine, orthopyroxene, clinopyroxene and Fe-Ti oxides make up the minor mafic proportion. While most researchers agree that the anorthosites formed from a high-alumina basaltic parental magma, there are disparate views on how that parental magma was generated. Whether the parental magma formed by partial melting of the lower crust, or by mantle melting, is a topic of much debate. The anorthosites commonly have crust-like isotopic signatures, but this could be produced by melting of the lower crust, or by crustal contamination of mantle-derived magmas. Many Proterozoic anorthosite complexes consist of both olivine-bearing and orthopyroxene-bearing anorthosites. This has been attributed to variable amounts of crustal contamination of mantle-derived magmas, based on evidence from isotopes and field relations. While geochemical and petrologic evidence for crustal contamination is plentiful, existing experimental work shows that a thermal divide exists for high-alumina basalts fractionating at lower crustal depths, casting doubts on whether fractionation of a mantle melt could produce anorthosite. Here I use high-pressure experiments to test whether the fractionation of high-alumina basalt can form anorthosites, and to what extent crustal contamination affects the fractionation sequence. The results are compared to new geochemical and petrologic data from the Kunene Anorthosite Complex (KAC), in Angola and Namibia. The KAC is one of the largest anorthosite complexes in the world, with an area of ~18 000 km2. The KAC (1438 – 1319 Ma) has an elongate shape and intruded into Palaeoproterozoic to Mesoproterozoic country rocks (~2200 to 1635 Ma) at the southern margin of the Congo craton. It is associated with a suite of granitoid rocks of variable composition, which are akin to the granitoids associated with nearly all Proterozoic anorthosites. The granitoids have been shown to be coeval with the anorthosites, but were from a chemically independent magma series. The most distinctive granitoids in the KAC are the Red Granites, which outcrop around the southern margins of the complex, and also cross-cut the complex in a NE-SW linear belt, dividing the complex roughly into northern and southern domains. The rocks of the KAC are highly variable in terms of mode, mineral chemistry, and texture, but there is a general trend of more olivine-bearing anorthosites north of the granite belt, and orthopyroxene-bearing anorthosites to the south. The olivine-bearing rocks (or leucotroctolites) typically contain plagioclase and cumulus and/or intercumulus olivine, with lesser interstitial orthopyroxene and/or clinopyroxene, Fe-Ti oxides, and biotite. The orthopyroxene-bearing anorthosites (or leuconorites) contain cumulus plagioclase ± cumulus orthopyroxene, and interstitial orthopyroxene, clinopyroxene, oxides and biotite. The leucotroctolites are characterized by more calcic plagioclase (An56-75), while the leuconorites contain more intermediate plagioclase (An48-56). The variability of the rocks across the complex suggests that the KAC consists of several coalesced plutons with different histories. The petrologic data and field observations in this study are consistent with the leuconorites of the complex being derived from a mantle-derived magma that experienced contamination by silica-rich rocks, crystallizing orthopyroxene rather than olivine, and less calcic plagioclase. The leucotroctolites experienced less or no contamination. To test whether the mineral dichotomy and the variations in plagioclase chemistry observed in Proterozoic anorthosites are due to variably contaminated mantle-derived magma, piston cylinder experiments were conducted on a synthetic high-alumina basalt (HAB) composition, as well as a mixture of this HAB with 30% of a Red Granite composition. Experiments were conducted at 10 kbar, to simulate the depth at which anorthosite differentiation most likely begins (based on Al-in-orthopyroxene geobarometry of highly aluminous orthopyroxene megacrysts that occur in many massifs). The uncontaminated experiments produced olivine as the first liquidus phase, followed by plagioclase (An65-68), and then by clinopyroxene, pigeonite and ilmenite at progressively lower temperatures. Residual liquids evolve towards more silica-rich compositions with decreasing temperature. The contamination experiments produced liquidus orthopyroxene, followed by plagioclase (An51-56), and then by pigeonite at lower temperatures. The experiments show that contamination of a primitive HAB magma by granitic material, most likely produced by partial melting of the lower crust during anorthosite formation, can shift the mineral assemblages of the crystallizing anorthosite from olivinebearing to orthopyroxene-bearing, and produce less calcic plagioclase than the uncontaminated HAB magma. This could explain the observation of olivine-bearing and orthopyroxene-bearing anorthosites in the KAC and many other Proterozoic anorthosites. Previous high-pressure experimental studies, using a slightly more evolved HAB composition, indicated the presence of a thermal divide, which causes liquids to evolve to more Si-poor compositions. The experimental results presented in this study however, do not show a thermal divide, indicating that small variations in experimental starting composition can cause large differences in the liquid line of descent. The results of this study indicate that partial melting of the mantle can produce anorthosite parental magmas, and that the range in mineral assemblages of the anorthosites can be accounted for by crustal contamination of a mantle-derived magma. Fractionation of the experimental starting compositions was also modeled using the MELTS algorithm. These calculations produce a close match to the experimental liquid trends. This allows for modeling of a variety of compositional and environmental variables. The MELTS modeling shows that as little as 10% contamination of HAB magma with a granitic composition may position the magma in the orthopyroxene stability field, forming orthopyroxene-bearing anorthosites. The modeling also shows that a variety of silica-rich contaminants, including granites, granodiorites and tonalities, produce similar results and liquid evolution trends, so a range of granitoid compositions may successfully produce the shift in mineral assemblages of the anorthosites. This suggests that crustal contamination of mantle-derived HAB could be a widespread process and the primary mechanism that produces the distinctive crust-like signatures in Proterozoic anorthosites. In summary, the mineralogical and chemical diversity observed in Proterozoic anorthosites can be produced by variable amounts of crustal contamination of mantle-derived, highalumina basaltic magma. The experimental results in this study combined with field observations, and geochemical and isotopic data, provide evidence for a model of massif-type anorthosite petrogenesis. Orthopyroxene-bearing rocks formed from an originally highalumina basaltic magma that experienced contamination by granitic partial melts of the lower crust, during ponding of the magma at the Moho. This process preconditioned the surrounding crust and possibly prevented further anatexis. Following emplacement of orthopyroxene-bearing anorthosites, subsequent magma pulses ponded at the Moho did not assimilate any/as much granitic material, as they were interacting with preconditioned crust, and formed olivine-bearing anorthosites. With better constraints on the parental magma composition, magma source, and crustal contamination processes, addressing aspects such as the tectonic setting and emplacement mechanisms of these massive intrusions should be prioritized. Understanding these enigmatic aspects of anorthosite petrogenesis is leading the anorthosite community towards answering the ultimate questions of why massif-type anorthosites are restricted to the Proterozoic.
XL2018
Blanco, Gaucher Gonzalo Homero. „Provenance analysis of the Neoproterozoic-Cambrian Nama Group (Namibia) and the Arroyo del Soldado Group (Uruguay) : implications for the palaeogeographic reconstruction of SW Gondwana“. Thesis, 2012. http://hdl.handle.net/10210/7257.
Der volle Inhalt der QuelleThe amalgamation of SW Gondwana after the break-up of Rodinia supercontinent during the Neoproterozoic-early Palaeozic was one of the most active tectonic periods of the earth history and its geological evolution remains controversial. Recently, diverse hypotheses such as mantle plume activity, orthogonal continent-continent and strike-slip collisions according to different models try to explain the complex evolution of the Pan-African Brasiliano orogens and the associated sedimentary basins. In order to get insight of the SW Gondwana reconstruction, provenance analyses were performed on two Neoproterozoic-early Palaeozic sedimentary units: (1) the Arroyo del Soldado Group representing a —5000 meter thick platform succession unconformably overlying the mainly Archaean to Neoproterozoic rocks of the Rio de la Plata Craton in Uruguay and, (2) the Nama Group, a —2000 meter thick shallow marine to fluvial deposit interpreted as a foreland basin in response to tectonism in the adjacent northern Damara and western Gariep Orogenic Belts and unconformably overlying the mainly Mesoproterozoic rocks of the Kalahari Craton in Namibia. Several techniques including petrography, heavy mineral analysis, geochemistry, Sm-Nd isotope analysis and zircon dating were applied to both sedimentary basins. The petrographic, heavy mineral analyses and geochemical results from the Nama Group indicate a recycled upper crust composition characterized by metamorphic and granitic sources and minor mafic rocks. Palaeocurrent analyses of the chromian spinet bearing sandstones of the Nama Basin point to a volcanic island arc source located in the Damara Belt. Detrital zircon dating of the Nama Group display major peaks of Neoproterozoic and Mesoproterozoic ages suggesting a provenance from the Damara/Gariep Belts and their basements. Palaeocurrents from the west and the dominance of Neoproterozoic-Cambrian detrital zircon ages (76%) in the "Molasse" stage of the foreland evolution probably indicate exhumation of the felsic volcanic arc root which probably occurred after the time indicated by the younger zircon dated at 531 ±9 Ma. The petrographic and geochemical results from the Arroyo del Soldado Group indicate a recycled upper crust composition characterized by source diversity composed of granite-gneissic and mafic-metamorphic rocks. On average, Nd isotopes account for negative ENd values and TDM ages in a range of variation found elsewhere within SW Gondwana. Detrital zircon dating indicate sources dominated by Palaeoproterozoic (1.7-2.0-2.2 Ga) and subordinate Archaean ages (2.5-2.9-3.5 Ga). The scarcity of Mesoproterozoic and Neoproterozoic zircons and palaeocurrent directions towards the east indicate that the Arroyo del Soldado Group was fed by detritus from the Rio de la Plata Craton favouring a passive margin tectonic setting for their deposition. Deformation of the Arroyo del Soldado Group took place ca. 530 Ma, after strike-slip collision with an African affinity terrane. Finally, based on the palaeogeographic evaluation, the provenance of Nama foreland basin and the passive margin deposit of the Arroyo del Soldado basin suggest that continent-continent collision of the Kalahari/Congo Cratons with the Rio de la Plata Craton and the Cuchilla Dionisio Pelotas Terrane most likely occurred due to strike slip accretion related to a component of N—S shortening in the period between 530 and 495 Ma.
Hoffe, Brian H. „Deep seismic evidence of late middle Proterozoic rifting beneath the Kalahari, Western Botswana /“. 1996. http://collections.mun.ca/u?/theses,35598.
Der volle Inhalt der QuelleBybee, Grant Michael. „High-pressure megacrysts and lower crustal contamination: probing a mantle source for Proterozoic massif-type anorthosites“. Thesis, 2014.
Den vollen Inhalt der Quelle findenWade, Benjamin P. „Unravelling the tectonic framework of the Musgrave Province, Central Australia“. 2006. http://hdl.handle.net/2440/57768.
Der volle Inhalt der Quellehttp://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1261003
Thesis(PhD)-- University of Adelaide, School of Earth and Environmental Sciences, 2006
Wade, Benjamin P. „Unravelling the tectonic framework of the Musgrave Province, Central Australia“. Thesis, 2006. http://hdl.handle.net/2440/57768.
Der volle Inhalt der QuelleThesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2006
Baghiyan-Yazd, Mohammad Hassan. „Palaeoichnology of the terminal Proterozoic-Early Cambrian transition in central Australia : interregional correlation and palaeoecology / Mohammad Hassan Baghiyan-Yazd“. Thesis, 1998. http://hdl.handle.net/2440/21668.
Der volle Inhalt der QuelleJones, James V. Connelly James N. „Proterozoic tectonic evolution of southern Laurentia new constraints from field studies and geochronology in southern Colorado and northern New Mexico, U.S.A. /“. 2005. http://repositories.lib.utexas.edu/bitstream/handle/2152/1945/jonesiiij96843.pdf.
Der volle Inhalt der QuelleGreyling, Lynette Natasha. „The paleoproterozoic carbonate-hosted Pering lead-zinc deposit, South Africa“. Thesis, 2012. http://hdl.handle.net/10210/4283.
Der volle Inhalt der QuelleThe Pering Pb-Zn deposit is hosted in the stromatolitic dolomites of the Campbellrand Subgroup of the Ghaap Group, Transvaal Supergroup. The deposit is situated 20 km northeast of the town Reivilo in the semi-arid region of the Northwest Province, South Africa. It has been classified as a Mississippi Valley type deposit and is, together with the Bushy Park Pb-Zn deposit and F-Pb-Zn deposits near Zeerust, the only known MVT deposit of Paleoproterozoic age. The Pering open cast mine has been operational since 1986, yielding 18 Mt at an average ore grade of 3.6 wt.% Zn and 0.6 wt.% Pb. The aim of this study is to devise a metallogenetic model by integrating core logging, petrography, fluid inclusion and stable C-0-S isotope studies. The mineralogy includes sphalerite, galena and minor chalcopyrite as ore minerals, with diagenetic pyrite, hydrothermal dolomite, quartz and calcite as gangue minerals. Sphalerite predominates over galena. Mineralisation occurs as (a) disseminated stratabound replacements sheets restricted mainly to stromatolitic zones of the Steekdorings Member of the Reivilo Formation, and as (b) open space infill in breccia bodies that cross-cut the stratigraphy. Three events of hydrothermal brecciation, resultant of prolonged pulses of fluid infiltration, and mineralisation are recognised. The first brecciation event is marked by the cementation of the dolomite host rock by sparry dolomite, closely associated with finegrained disseminated sphalerite and galena. The second brecciation event is of minor importance, and is marked by the formation of small amounts of the second sphalerite generation, while the third, and final, brecciation event is marked by the formation of euhedral sphalerite, galena, quartz, sparry dolomite, and calcite as open space fill.
Schaefer, Bruce F. „Insights into proterozoic tectonics from the southern Eyre Peninsula, South Australia / Bruce F. Schaefer“. Thesis, 1998. http://hdl.handle.net/2440/19291.
Der volle Inhalt der QuelleIncludes bibliographical references (6 leaves)
xi, 131, [71] leaves : ill., maps ; 30 cm.
Thesis (Ph.D.)--University of Adelaide, Dept. of Geology and Geophysics, 1999
MacDougall, Craig S. „A metallogenic study of polymetallic, granophile mineralization within the early Proterozoic Upper Aillik Group, Round Pond area, Central Mineral Belt, Labrador /“. 1988. http://collections.mun.ca/u?/theses,124901.
Der volle Inhalt der QuelleClendinin, C. W. „Tectonic influence on the evolution of the Early Proterozoic Transvaal sea, southern Africa“. Thesis, 2015. http://hdl.handle.net/10539/16515.
Der volle Inhalt der QuelleCamacho, Alfredo. „An isotopic study of deep-crustal orogenic processes : Musgrave Block, Central Australia“. Phd thesis, 1997. http://hdl.handle.net/1885/146000.
Der volle Inhalt der Quelle