Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Geographic atrophy.

Zeitschriftenartikel zum Thema „Geographic atrophy“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Geographic atrophy" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

STAURENGHI, G. „Geographic atrophy“. Acta Ophthalmologica 90 (06.08.2012): 0. http://dx.doi.org/10.1111/j.1755-3768.2012.4212.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Holz, Frank G., Erich C. Strauss, Steffen Schmitz-Valckenberg und Menno van Lookeren Campagne. „Geographic Atrophy“. Ophthalmology 121, Nr. 5 (Mai 2014): 1079–91. http://dx.doi.org/10.1016/j.ophtha.2013.11.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sheikh, Ahmed Bilal, Andrew Lee, Adnan Mallick und Ronni M. Lieberman. „Geographic Atrophy“. Advances in Ophthalmology and Optometry 3, Nr. 1 (August 2018): 205–15. http://dx.doi.org/10.1016/j.yaoo.2018.04.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Schmitz-Valckenberg, Steffen, Srinivas Sadda, Giovanni Staurenghi, Emily Y. Chew, Monika Fleckenstein und Frank G. Holz. „GEOGRAPHIC ATROPHY“. Retina 36, Nr. 12 (Dezember 2016): 2250–64. http://dx.doi.org/10.1097/iae.0000000000001258.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bird, Alan C., Rachel L. Phillips und Gregory S. Hageman. „Geographic Atrophy“. JAMA Ophthalmology 132, Nr. 3 (01.03.2014): 338. http://dx.doi.org/10.1001/jamaophthalmol.2013.5799.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Takahashi, Ayako, Sotaro Ooto, Kenji Yamashiro, Hiroshi Tamura, Akio Oishi, Manabu Miyata, Masayuki Hata, Munemitsu Yoshikawa, Nagahisa Yoshimura und Akitaka Tsujikawa. „Pachychoroid Geographic Atrophy“. Ophthalmology Retina 2, Nr. 4 (April 2018): 295–305. http://dx.doi.org/10.1016/j.oret.2017.08.016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Guymer, Robyn H. „Geographic Atrophy Trials“. Ophthalmology Retina 2, Nr. 6 (Juni 2018): 515–17. http://dx.doi.org/10.1016/j.oret.2018.03.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ergun, Erdem, Michael Stur und Wolfgang Drexler. „Geographic Atrophy Margins“. Ophthalmology 117, Nr. 5 (Mai 2010): 1051. http://dx.doi.org/10.1016/j.ophtha.2010.01.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Neroev, Vladimir V., Marina V. Zueva, Natalia V. Neroeva, Ludmila A. Katargina, Oksana A. Losanova, Marina V. Ryabina und Irina V. Tsapenko. „Clinical and Functional Characteristics of Secondary Geographic Atrophy Against the Background of Exudative Age-Related Macular Degeneration“. Annals of the Russian academy of medical sciences 76, Nr. 4 (22.10.2021): 384–93. http://dx.doi.org/10.15690/vramn1557.

Der volle Inhalt der Quelle
Annotation:
Background.Studies demonstrate the need for long-term follow-up of patients with wet age-related macular degeneration (AMD) treated with inhibitors of angiogenesis to monitor long-term vision outcomes and assess the safety of antiangiogenic therapy in relation to the risk of secondary geographic atrophy. Aims to determine the characteristic clinical and functional signs of secondary GA that developed against the background of wet AMD. Methods.In 22 patients (25 eyes) with wet AMD and 18 healthy subjects comparable in age and sex standard ophthalmological and instrumental studies were performed and photopic electroretinograms (ERGs) were recorded according to ISCEV standards, flicker-ERGs, multifocal ERGs and electrooculogram. Results.The appearance of the area of secondary atrophy against the background of wet AMD in eyes treated with inhibitors of angiogenesis is clinically indistinguishable from areas of geographic atrophy that developed as an outcome of dry AMD. The ERG-signs of secondary atrophy are described, which are similar to the biomarkers of primary atrophy and specifically differ from them. Secondary atrophy is characterized by the dependence of the increase in the b/a ratio on the atrophic area, reducing of the 8.3 Hz-flicker-ERG amplitude in the absence of 24 Hz-flicker ERG changes. In eyes with secondary atrophy, a significant decrease in the density of the multifocal ERG P1-peak was shown not only in the first hexagon but also in the parafoveal zone. The electrooculography results showed a sharper dark troughs decrease in with an increase in Ardens ratio in patients with secondary atrophya on the background of wet AMD, in contrast to the previously described changes in primary geographic atrophy. Conclusion.Comparison of the change in the b/a ratio with secondary atrophy area in patients with wet AMD may have clinical implications for assessing retinal dysfunction and predicting visual function. Secondary atrophy is associated with a pronounced inhibition of photoreceptor activity with better preservation of cone bipolar cells. The ERG and electrooculography data taking together indicate a more significant dysfunction of the retinal pigment epithelium in GA against the background of wet AMD and the associated deterioration of photoreceptor function than the changes characterizing primary geographic atrophy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sadda, SriniVas R., und David Sarraf. „Therapeutic Margin for Geographic Atrophy“. JAMA Ophthalmology 139, Nr. 7 (01.07.2021): 751. http://dx.doi.org/10.1001/jamaophthalmol.2021.1414.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Fadel, AlaaM. „Geographic atrophy of the macula“. Delta Journal of Ophthalmology 16, Nr. 2 (2015): 103. http://dx.doi.org/10.4103/1110-9173.165061.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Smith, R. Theodore. „Geographic Atrophy and Cardiovascular Disease“. Investigative Opthalmology & Visual Science 55, Nr. 10 (08.10.2014): 6262. http://dx.doi.org/10.1167/iovs.14-15387.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Mogk, Lylas G., Mary Lou Jackson und David Dahl. „Geographic Atrophy and Visual Function“. Ophthalmology 119, Nr. 4 (April 2012): 885–885. http://dx.doi.org/10.1016/j.ophtha.2011.09.052.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Sohn, Elliott H., Miles J. Flamme-Wiese, S. Scott Whitmore, Grefachew Workalemahu, Alexander G. Marneros, Erin A. Boese, Young H. Kwon et al. „Choriocapillaris Degeneration in Geographic Atrophy“. American Journal of Pathology 189, Nr. 7 (Juli 2019): 1473–80. http://dx.doi.org/10.1016/j.ajpath.2019.04.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

BIRD, A. „Cell loss in geographic atrophy“. Acta Ophthalmologica 88 (September 2010): 0. http://dx.doi.org/10.1111/j.1755-3768.2010.460.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Abdillahi, Hannan, Volker Enzmann, Valéry V. Wittwer, Sebastian Wolf und Ute E. K. Wolf-Schnurrbusch. „Vitreoretinal Interface Changes in Geographic Atrophy“. Ophthalmology 121, Nr. 9 (September 2014): 1734–39. http://dx.doi.org/10.1016/j.ophtha.2014.03.036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Joachim, Nichole, Paul Mitchell, Annette Kifley, Elena Rochtchina, Thomas Hong und Jie Jin Wang. „Incidence and Progression of Geographic Atrophy“. Ophthalmology 120, Nr. 10 (Oktober 2013): 2042–50. http://dx.doi.org/10.1016/j.ophtha.2013.03.029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Sastre-Ibáñez, M., A. Barreiro-González, R. Gallego-Pinazo, R. Dolz-Marco und B. García-Armendariz. „Geographic atrophy: Etiopathogenesis and current therapies“. Archivos de la Sociedad Española de Oftalmología (English Edition) 93, Nr. 1 (Januar 2018): 22–34. http://dx.doi.org/10.1016/j.oftale.2017.10.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Schoenberger, Scott D., und Anita Agarwal. „Geographic Chorioretinal Atrophy in Pseudoxanthoma Elasticum“. American Journal of Ophthalmology 156, Nr. 4 (Oktober 2013): 715–23. http://dx.doi.org/10.1016/j.ajo.2013.05.034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Mcbain, Vikki A., Reena Kumari, John Townend und Noemi Lois. „GEOGRAPHIC ATROPHY IN RETINAL ANGIOMATOUS PROLIFERATION“. Retina 31, Nr. 6 (Juni 2011): 1043–52. http://dx.doi.org/10.1097/iae.0b013e3181fe54c7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Gocho, K., V. Sarda, S. Falah, J. A. Sahel, F. Sennlaub, M. Benchaboune, M. Ullern und M. Paques. „Adaptive Optics Imaging of Geographic Atrophy“. Investigative Ophthalmology & Visual Science 54, Nr. 5 (25.04.2013): 3673–80. http://dx.doi.org/10.1167/iovs.12-10672.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Corbelli, Eleonora, Riccardo Sacconi, Luigi Antonio De Vitis, Adriano Carnevali, Alessandro Rabiolo, Lea Querques, Francesco Bandello und Giuseppe Querques. „Choroidal Round Hyporeflectivities in Geographic Atrophy“. PLOS ONE 11, Nr. 11 (23.11.2016): e0166968. http://dx.doi.org/10.1371/journal.pone.0166968.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Schmitz-Valckenberg, Steffen, José-Alain Sahel, Ronald Danis, Monika Fleckenstein, Glenn J. Jaffe, Sebastian Wolf, Christian Pruente und Frank G. Holz. „Natural History of Geographic Atrophy Progression Secondary to Age-Related Macular Degeneration (Geographic Atrophy Progression Study)“. Ophthalmology 123, Nr. 2 (Februar 2016): 361–68. http://dx.doi.org/10.1016/j.ophtha.2015.09.036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Monés, Jordi, und Marc Biarnés. „Geographic atrophy phenotype identification by cluster analysis“. British Journal of Ophthalmology 102, Nr. 3 (20.07.2017): 388–92. http://dx.doi.org/10.1136/bjophthalmol-2017-310268.

Der volle Inhalt der Quelle
Annotation:
Background/aimsTo identify ocular phenotypes in patients with geographic atrophy secondary to age-related macular degeneration (GA) using a data-driven cluster analysis.MethodsThis was a retrospective analysis of data from a prospective, natural history study of patients with GA who were followed for ≥6 months. Cluster analysis was used to identify subgroups within the population based on the presence of several phenotypic features: soft drusen, reticular pseudodrusen (RPD), primary foveal atrophy, increased fundus autofluorescence (FAF), greyish FAF appearance and subfoveal choroidal thickness (SFCT). A comparison of features between the subgroups was conducted, and a qualitative description of the new phenotypes was proposed. The atrophy growth rate between phenotypes was then compared.ResultsData were analysed from 77 eyes of 77 patients with GA. Cluster analysis identified three groups: phenotype 1 was characterised by high soft drusen load, foveal atrophy and slow growth; phenotype 3 showed high RPD load, extrafoveal and greyish FAF appearance and thin SFCT; the characteristics of phenotype 2 were midway between phenotypes 1 and 3. Phenotypes differed in all measured features (p≤0.013), with decreases in the presence of soft drusen, foveal atrophy and SFCT seen from phenotypes 1 to 3 and corresponding increases in high RPD load, high FAF and greyish FAF appearance. Atrophy growth rate differed between phenotypes 1, 2 and 3 (0.63, 1.91 and 1.73 mm2/year, respectively, p=0.0005).ConclusionCluster analysis identified three distinct phenotypes in GA. One of them showed a particularly slow growth pattern.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Ewing, Tyler M., Hannah Khan, Adam LC Wadsworth, Jordyn Vannavong und Arshad M. Khanani. „Update on Avacincaptad Pegol for Geographic Atrophy“. US Ophthalmic Review 16, Nr. 1 (2022): 36. http://dx.doi.org/10.17925/usor.2022.16.1.36.

Der volle Inhalt der Quelle
Annotation:
Geographic atrophy (GA) secondary to age-related macular degeneration is the leading cause of permanent vision loss in patients over the age of 50 in developed countries. GA is characterized by the atrophy of retinal pigment epithelium and photoreceptors and can lead to central or peripheral vision loss, depending on the location of the atrophy. Currently, there are no US Food and Drug Administration-approved treatments for GA. Avacincaptad pegol (Zimura®; IVERIC Bio Inc, New York, NY, USA) is a C5-specific inhibitor that is being investigated as a potential treatment for GA. C5 is a key protein within the complement system, which maintains retina integrity and health under normal conditions. It is hypothesized that unregulated activation of the complement system (indicated by elevated levels of active proteins such as the membrane attack complex) can exacerbate the progression of GA. This article reviews the latest data regarding avacincaptad pegol as an investigational therapeutic for GA.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Patel, Hershel R., und David Eichenbaum. „Geographic atrophy: clinical impact and emerging treatments“. Ophthalmic Surgery, Lasers and Imaging Retina 46, Nr. 1 (01.01.2015): 8–13. http://dx.doi.org/10.3928/23258160-20150101-01.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Farci, Roberta, Arturo Carta, Paolo Fogagnolo, Luca Mario Rossetti und Maurizio Fossarello. „Compass Fundus-Guided Perimetry in Geographic Atrophy“. Journal of Ophthalmology 2022 (10.09.2022): 1–7. http://dx.doi.org/10.1155/2022/1315588.

Der volle Inhalt der Quelle
Annotation:
Purpose. To evaluate compass (CMP), a recently introduced device that combines scanning ophthalmoscopy, automated perimetry, and eye tracking, for fundus-guided perimetry (microperimetry) with the purpose of correlating perimetric retinal sensitivity (PRS) and retinal geographic atrophy (GA) features. Materials and Methods. A retrospective, cross-sectional study was performed in 56 eyes of 43 patients affected by GA. All patients underwent compass 10-2 perimetry, consisting of a full-threshold visual field on fundus photography and an infrared (IR) image of the central 30° of the retina. Data were exported to an Excel sheet. Binarization with black/white (B/W) variables was applied on the compass photo fundus and matched with visual field scores. Patients underwent autofluorescence (AF) and IR images (Heidelberg, Germany): CMP and Heidelberg IR images were homologated by using GIMP software (https://www.gimp.org), and then atrophic areas were manually measured with the ImageJ program. CMP perimetric grid was overlapped with AF and IR pictures by using GIMP, obtaining composite TIFF images, which were then analyzed with the ImageJ greyscale score (GSS) tool. A hyperautofluorescent halo was identified on the GA edges of some patients. Pearson’s correlation between GA size on IR compass and IR Heidelberg and between GSS and PRS values has been calculated; the independent t-test was realized to calculate the correlation between GSS and B/W variables identified on the CMP photo fundus. The Spearman correlation between total deviation and pattern deviation was calculated. Results. The AUC-ROC score between CMP scores and B/W variables was 93,4%. The Spearman correlation between total deviation and pattern deviation was highly significant ( p = 0,00 ). The correlation between AF GSS values and PRS was significant ( p value = 0,00), the correlation between GSS of hyperautofluorescent points and PRS was significant ( p value = 0,00), and the correlation between IR GSS and PRS was significant ( p value = 0,00). The correlation between AF GSS and B/W variables was significant ( p value = 0,002), the correlation between hyperautofluorescent points and B/W was not significant ( p value = 0,40), and the correlation between IR GSS and B/W was significant ( p = 0,00 ). Conclusions. Based on our preliminary results, compass seems to be a reliable, quick, and safe device for the anatomical and functional study of GA. The direct visualization of the visual field on the fundus photography as a background allows a precise assessment and clinical monitoring of this disease.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Choudhry, Netan, Andrea Giani und Joan W. Miller. „Fundus Autofluorescence in Geographic Atrophy: A Review“. Seminars in Ophthalmology 25, Nr. 5-6 (November 2010): 206–13. http://dx.doi.org/10.3109/08820538.2010.518121.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

McLeod, D. Scott, Imran Bhutto, Malia M. Edwards, Manasee Gedam, Rajkumar Baldeosingh und Gerard A. Lutty. „Mast Cell-Derived Tryptase in Geographic Atrophy“. Investigative Opthalmology & Visual Science 58, Nr. 13 (21.11.2017): 5887. http://dx.doi.org/10.1167/iovs.17-22989.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Querques, Giuseppe, Vittorio Capuano, Pietro Frascio, Sandrine Zweifel, Anouk Georges und Eric H. Souied. „WEDGE-SHAPED SUBRETINAL HYPOREFLECTIVITY IN GEOGRAPHIC ATROPHY“. Retina 35, Nr. 9 (September 2015): 1735–42. http://dx.doi.org/10.1097/iae.0000000000000553.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

HOLZ, F., S. SCHMITZ-VALCKENBERG und M. FLECKENSTEIN. „Sparing of the fovea in geographic atrophy“. Acta Ophthalmologica 90 (06.08.2012): 0. http://dx.doi.org/10.1111/j.1755-3768.2012.3227.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Fleckenstein, Monika, Steffen Schmitz-Valckenberg und Frank G. Holz. „Author Response: Geographic Atrophy and Cardiovascular Disease“. Investigative Opthalmology & Visual Science 55, Nr. 10 (08.10.2014): 6263. http://dx.doi.org/10.1167/iovs.14-15598.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Gensler, Gary, Traci E. Clemons, Amitha Domalpally, Ronald P. Danis, Barbara Blodi, Jack Wells, Michael Rauser et al. „Treatment of Geographic Atrophy with Intravitreal Sirolimus“. Ophthalmology Retina 2, Nr. 5 (Mai 2018): 441–50. http://dx.doi.org/10.1016/j.oret.2017.08.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Smiddy, William E. „Geographic Atrophy: How to Count the Costs?“ Ophthalmology Retina 3, Nr. 11 (November 2019): 927–28. http://dx.doi.org/10.1016/j.oret.2019.07.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Heier, Jeffrey S., Dante Pieramici, Usha Chakravarthy, Sunil S. Patel, Sunil Gupta, Andrew Lotery, Eleonora M. Lad et al. „Visual Function Decline Resulting from Geographic Atrophy“. Ophthalmology Retina 4, Nr. 7 (Juli 2020): 673–88. http://dx.doi.org/10.1016/j.oret.2020.01.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Maguire, Paul, und Andrew K. Vine. „Geographic Atrophy of the Retinal Pigment Epithelium“. American Journal of Ophthalmology 102, Nr. 5 (November 1986): 621–25. http://dx.doi.org/10.1016/0002-9394(86)90535-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Cohen, Salomon Y., Lise Dubois, Sylvia Nghiem-Buffet, Sandrine Ayrault, Franck Fajnkuchen, Brigitte Guiberteau, Corinne Delahaye-Mazza, Gabriel Quentel und Ramin Tadayoni. „Retinal Pseudocysts in Age-Related Geographic Atrophy“. American Journal of Ophthalmology 150, Nr. 2 (August 2010): 211–17. http://dx.doi.org/10.1016/j.ajo.2010.02.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Thompson, Cheryl L., Gyungah Jun, Barbara E. K. Klein, Ronald Klein, Jennifer Capriotti, Kristine E. Lee und Sudha K. Iyengar. „Genetics of Pigment Changes and Geographic Atrophy“. Investigative Opthalmology & Visual Science 48, Nr. 7 (01.07.2007): 3005. http://dx.doi.org/10.1167/iovs.06-1325.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Sivaprasad, Sobha, Elizabeth A. Tschosik, Robyn H. Guymer, Audrey Kapre, Ivan J. Suñer, Antonia M. Joussen, Paolo Lanzetta und Daniela Ferrara. „Living with Geographic Atrophy: An Ethnographic Study“. Ophthalmology and Therapy 8, Nr. 1 (31.01.2019): 115–24. http://dx.doi.org/10.1007/s40123-019-0160-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Nassisi, Marco, Yue Shi, Wenying Fan, Enrico Borrelli, Akihito Uji, Michael S. Ip und Srinivas R. Sadda. „Choriocapillaris impairment around the atrophic lesions in patients with geographic atrophy: a swept-source optical coherence tomography angiography study“. British Journal of Ophthalmology 103, Nr. 7 (21.08.2018): 911–17. http://dx.doi.org/10.1136/bjophthalmol-2018-312643.

Der volle Inhalt der Quelle
Annotation:
AimsTo evaluate the choriocapillaris (CC) flow alterations around geographic atrophy (GA) in eyes with dry age-related macular degeneration.MethodsUsing a swept-source optical coherence tomography angiography (SS-OCTA) device, two volume 6×6 mm scans were acquired in patients with GA presenting between June and December 2017 at the Doheny-UCLA Eye Centers. The area of GA was delineated on the en face structural OCT fundus images. For each eye, the en face OCTA slabs at the level of the CC from the two acquisitions were averaged and compensated for signal loss using the corresponding structural en face images. The resulting images were binarised and analysed for the percentage of flow voids in the para-atrophy zone (a 500 µm wide ring around the immediate edge of the atrophy) and in the peri-atrophy zone (a 500 µm wide ring around the para-atrophy zone edge), the latter considered as a reference in the comparative analysis.ResultsThirty eyes of 20 patients were enrolled. The percentage of flow voids in the para-atrophy zone was 27.23%±6.29% and was significantly higher than in the surrounding peri-atrophy zone (23.4%±6.01%; p<0.001). There was no significant correlation between the flow void percentage in these regions and age, visual acuity, extent of the atrophic area or central choroidal thickness.ConclusionsA significant impairment of the CC flow is present in the zone immediately surrounding the GA lesions strengthening the hypothesis that CC alterations may be relevant to the progression of GA.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Ayachit, MS, FVRS, Apoorva, Farhat Fatima, MS und Guruprasad Ayachit, MS, FVRS. „Japanese Fan Hypoautofluorescence in Diffuse Trickling Geographic Atrophy“. Ophthalmology Retina 5, Nr. 6 (Juni 2021): 570. http://dx.doi.org/10.1016/j.oret.2021.03.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Csaky, Karl G. „Gene Therapy in the Treatment of Geographic Atrophy“. International Ophthalmology Clinics 61, Nr. 4 (2021): 241–47. http://dx.doi.org/10.1097/iio.0000000000000387.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Desai, Dhaval, und Pravin U. Dugel. „Complement cascade inhibition in geographic atrophy: a review“. Eye 36, Nr. 2 (09.01.2022): 294–302. http://dx.doi.org/10.1038/s41433-021-01765-x.

Der volle Inhalt der Quelle
Annotation:
AbstractThe pathophysiology of dry age-related macular degeneration (AMD) and specifically geographic atrophy (GA) has been linked to the complement cascade. This cascade is part of the innate immune system and is made up of the classical, alternative, and lectin pathways. The pathways comprise a system of plasma and membrane-associated serum proteins that are activated with identification of a nonself entity. A number of these proteins have been implicated in the development and progression of dry AMD. The three pathways converge at C3 and cascade down through C5, making both of these proteins viable targets for the treatment of dry AMD. In addition, there are a number of complement factors, CFB, CFD, CFH, and CFI, which are potential therapeutic targets as well. Several different complement-directed therapeutics are being studied for the treatment of dry AMD with the hope that one of these approaches will emerge as the first approved treatment for GA.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Ogura, Shuntaro, Rajkumar Baldeosingh, Imran A. Bhutto, Siva P. Kambhampati, Donald Scott McLeod, Malia M. Edwards, Rana Rais, William Schubert und Gerard A. Lutty. „A role for mast cells in geographic atrophy“. FASEB Journal 34, Nr. 8 (11.06.2020): 10117–31. http://dx.doi.org/10.1096/fj.202000807r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Chaikitmongkol, Voraporn, Mongkol Tadarati und Neil M. Bressler. „Recent approaches to evaluating and monitoring geographic atrophy“. Current Opinion in Ophthalmology 27, Nr. 3 (Mai 2016): 217–23. http://dx.doi.org/10.1097/icu.0000000000000259.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Edwards, Malia M., D. Scott McLeod, Imran A. Bhutto, Rhonda Grebe, Maeve Duffy und Gerard A. Lutty. „Subretinal Glial Membranes in Eyes With Geographic Atrophy“. Investigative Opthalmology & Visual Science 58, Nr. 3 (01.03.2017): 1352. http://dx.doi.org/10.1167/iovs.16-21229.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Göbel, Arno P., Monika Fleckenstein, Steffen Schmitz-Valckenberg, Christian K. Brinkmann und Frank G. Holz. „Imaging Geographic Atrophy in Age-Related Macular Degeneration“. Ophthalmologica 226, Nr. 4 (2011): 182–90. http://dx.doi.org/10.1159/000330420.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Monés, Jordi, Míriam Garcia, Marc Biarnés, Aparna Lakkaraju und Lucia Ferraro. „Drusen Ooze: A Novel Hypothesis in Geographic Atrophy“. Ophthalmology Retina 1, Nr. 6 (November 2017): 461–73. http://dx.doi.org/10.1016/j.oret.2017.02.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Rim, Tyler Hyungtaek, Ryo Kawasaki, Yih-Chung Tham, Se Woong Kang, Paisan Ruamviboonsuk, Mukharram M. Bikbov, Masahiro Miyake et al. „Prevalence and Pattern of Geographic Atrophy in Asia“. Ophthalmology 127, Nr. 10 (Oktober 2020): 1371–81. http://dx.doi.org/10.1016/j.ophtha.2020.04.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Thorell, Mariana R., und Philip J. Rosenfeld. „Treatment of Geographic Atrophy: What’s on the Horizon?“ Current Ophthalmology Reports 2, Nr. 1 (19.01.2014): 20–25. http://dx.doi.org/10.1007/s40135-013-0036-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie