Zeitschriftenartikel zum Thema „Geochemistry“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Geochemistry.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Geochemistry" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Price, Jonathan G. „SEG Presidential Address: I Never Met a Rhyolite I Didn’t Like – Some of the Geology in Economic Geology“. SEG Discovery, Nr. 57 (01.04.2004): 1–13. http://dx.doi.org/10.5382/segnews.2004-57.fea.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT Rhyolites and their deep-seated chemical equivalents, granites, are some of the most interesting rocks. They provide good examples of why it is important to look carefully at fresh rocks in terms of fıeld relationships, mineralogy, petrography, petrology, geochemistry, and alteration processes. Because of their evolved geochemisty, they commonly are important in terms of ore-forming processes. They are almost certainly the source of metal in many beryllium and lithium deposits and the source of heat for many other hydrothermal systems. From other perspectives, rhyolitic volcanic eruptions have the capacity of destroying civilizations, and their geochemistry (e.g., high contents of radioactive elements) is relevant to public policy decision-making.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

DEMETRIADES, A. „Applied geochemistry in the twenty-first century: mineral exploration and environmental surveys“. Bulletin of the Geological Society of Greece 34, Nr. 3 (01.01.2001): 1131. http://dx.doi.org/10.12681/bgsg.17173.

Der volle Inhalt der Quelle
Annotation:
Applied (exploration and environmental) geochemistry in the twentieth century is briefly reviewed, and its future developments in the twenty-first century are envisaged in the light of advances in analytical instruments (laboratory and field) and computer technology. It is concluded that applied geochemical methods must be used by well-trained applied geochemists, and the potential for future developments is limited only by their ingenuity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

VAN SCHMUS, W. R. „Crustal Geochemistry: Archaean Geochemistry.“ Science 231, Nr. 4739 (14.02.1986): 751–52. http://dx.doi.org/10.1126/science.231.4739.751.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hunt, John M. „Geochemistry“. Geochimica et Cosmochimica Acta 53, Nr. 12 (Dezember 1989): 3343. http://dx.doi.org/10.1016/0016-7037(89)90115-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Volkman, John K. „Future Outlook for Applications of Biomarkers and Isotopes in Organic Geochemistry“. Elements 18, Nr. 2 (01.04.2022): 115–20. http://dx.doi.org/10.2138/gselements.18.2.115.

Der volle Inhalt der Quelle
Annotation:
Organic geochemistry continues to make important contributions to our understanding of how the biogeochemistry of our planet and its environment has changed over time and of the role of human impacts today. This article provides a brief overview of the field and a perspective on how it might develop in the near future. Particular emphasis is placed on biomarkers (compounds with a distinctive chemical structure that can be related to specific organisms) and stable isotopes of carbon, hydrogen, and nitrogen, as these are major tools used by organic geochemists. Many geochemical studies involve a mixture of disciplines and so this article also focuses on how this research area can complement work in other fields.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Canfield, Donald E. „Marine Geochemistry“. Limnology and Oceanography 45, Nr. 7 (November 2000): 1680. http://dx.doi.org/10.4319/lo.2000.45.7.1680.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hanson, B. „GEOCHEMISTRY: Selenospheres“. Science 303, Nr. 5656 (16.01.2004): 289b—289. http://dx.doi.org/10.1126/science.303.5656.289b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Till, Christy. „Big geochemistry“. Nature 523, Nr. 7560 (Juli 2015): 293–94. http://dx.doi.org/10.1038/523293a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

WILSON, ELIZABETH K. „MODELING GEOCHEMISTRY“. Chemical & Engineering News 88, Nr. 14 (05.04.2010): 39–40. http://dx.doi.org/10.1021/cen-v088n014.p039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Elderfield, H. „Marine Geochemistry“. Marine and Petroleum Geology 17, Nr. 9 (November 2000): 1083–84. http://dx.doi.org/10.1016/s0264-8172(00)00036-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Fuge, Ron. „Environmental Geochemistry“. Applied Geochemistry 17, Nr. 8 (August 2002): 959. http://dx.doi.org/10.1016/s0883-2927(02)00094-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Wakefield, S. J. „Applied geochemistry“. Continental Shelf Research 8, Nr. 1 (Januar 1988): 111. http://dx.doi.org/10.1016/0278-4343(88)90028-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Parker, Andrew, und A. Mark Pollard. „Archaeological geochemistry“. Applied Geochemistry 21, Nr. 10 (Oktober 2006): 1625. http://dx.doi.org/10.1016/j.apgeochem.2006.07.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Wangersky, Peter J. „Marine geochemistry“. Chemical Geology 90, Nr. 1-2 (März 1991): 170–71. http://dx.doi.org/10.1016/0009-2541(91)90043-q.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Rothwell, R. G. „Marine geochemistry“. Marine and Petroleum Geology 8, Nr. 3 (August 1991): 374. http://dx.doi.org/10.1016/0264-8172(91)90096-j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Gardner, Christopher B., David T. Long und W. Berry Lyons. „Urban Geochemistry“. Applied Geochemistry 83 (August 2017): 1–2. http://dx.doi.org/10.1016/j.apgeochem.2017.05.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

WINDLEY, B. „Archaean Geochemistry“. Earth-Science Reviews 24, Nr. 1 (März 1987): 67. http://dx.doi.org/10.1016/0012-8252(87)90051-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Hosking, K. F. G. „Applied geochemistry“. Journal of Southeast Asian Earth Sciences 1, Nr. 2 (Januar 1986): 143–44. http://dx.doi.org/10.1016/0743-9547(86)90027-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Hirner, A. V., und P. Hahn-Weinheimer. „Organometallic Geochemistry“. Chemical Geology 70, Nr. 1-2 (August 1988): 116. http://dx.doi.org/10.1016/0009-2541(88)90529-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Hawkes, Herbert E. „Applied geochemistry“. Geochimica et Cosmochimica Acta 50, Nr. 11 (November 1986): 2528. http://dx.doi.org/10.1016/0016-7037(86)90039-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Chaffee, Maurice A. „Drainage geochemistry“. Journal of Geochemical Exploration 54, Nr. 2 (Oktober 1995): 149–51. http://dx.doi.org/10.1016/0375-6742(95)90006-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

SELINUS, O. „Handbook of exploration geochemistry, volume 6 drainage geochemistry“. Applied Geochemistry 11, Nr. 3 (Mai 1996): 489–90. http://dx.doi.org/10.1016/s0883-2927(96)81806-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Gong, Qingjie, und Zeming Shi. „Special Issue on New Advances and Illustrations in Applied Geochemistry in China“. Applied Sciences 13, Nr. 14 (15.07.2023): 8220. http://dx.doi.org/10.3390/app13148220.

Der volle Inhalt der Quelle
Annotation:
The 9th national conference on applied geochemistry in China will be held in Chengdu, Sichuan province, in October 2023, hosted by the committee of applied geochemistry, the Chinese Society for Mineralogy, Petrology and Geochemistry (CSMPG) [...]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Britt, Allison F., Raymond E. Smith und David J. Gray. „Element mobilities and the Australian regolith - a mineral exploration perspective“. Marine and Freshwater Research 52, Nr. 1 (2001): 25. http://dx.doi.org/10.1071/mf00054.

Der volle Inhalt der Quelle
Annotation:
Much of the Australian regolith ranges from Palaeogene to Late Cretaceous in age or even older, contrasting with the relatively young landscapes of the Northern Hemisphere. Hence, many imported geochemical exploration methods are unsuitable for Australian environments; this has led to successful homegrown innovation. Exploration geochemistry seeks to track geochemical anomalies arising from concealed ore deposits to their source. Much is known about element associations for different types of ore deposits and about observed patterns of dispersion. Element mobility in a range of Western Australian environments is discussed, drawing on field examples from the Mt Percy and Boddington gold mines and the Yandal greenstone belt, with reference to the effect of modern and past weathering regimes and the influence of groundwater on element mobility. Soil biota and vegetation affect Au mobility in the regolith, but specific processes, scale and environmental factors are unknown. Possible future synergies between biogeochemical or environmental research and regolith exploration geochemistry include determining the fundamental biogeochemical processes involved in the formation of geochemical anomalies as well as environmental concerns such as regolith aspects of land degradation. Exploration geochemists must study the work of biogeochemical and environmental researchers, and vice versa. There should also be collaborative research with regolith scientists and industry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Bispo-Silva, Sizenando, Cleverson J. Ferreira de Oliveira und Gabriel de Alemar Barberes. „Geochemical Biodegraded Oil Classification Using a Machine Learning Approach“. Geosciences 13, Nr. 11 (24.10.2023): 321. http://dx.doi.org/10.3390/geosciences13110321.

Der volle Inhalt der Quelle
Annotation:
Chromatographic oil analysis is an important step for the identification of biodegraded petroleum via peak visualization and interpretation of phenomena that explain the oil geochemistry. However, analyses of chromatogram components by geochemists are comparative, visual, and consequently slow. This article aims to improve the chromatogram analysis process performed during geochemical interpretation by proposing the use of Convolutional Neural Networks (CNN), which are deep learning techniques widely used by big tech companies. Two hundred and twenty-one chromatographic oil images from different worldwide basins (Brazil, the USA, Portugal, Angola, and Venezuela) were used. The open-source software Orange Data Mining was used to process images by CNN. The CNN algorithm extracts, pixel by pixel, recurring features from the images through convolutional operations. Subsequently, the recurring features are grouped into common feature groups. The training result obtained an accuracy (CA) of 96.7% and an area under the ROC (Receiver Operating Characteristic) curve (AUC) of 99.7%. In turn, the test result obtained a 97.6% CA and a 99.7% AUC. This work suggests that the processing of petroleum chromatographic images through CNN can become a new tool for the study of petroleum geochemistry since the chromatograms can be loaded, read, grouped, and classified more efficiently and quickly than the evaluations applied in classical methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Shi, Long Qing, Dao Kun Ni und Jian Guang Cheng. „The Study on Establishing the Baseline Mode of Coal Mine Area Soil Heavy Metal Pollution“. Applied Mechanics and Materials 229-231 (November 2012): 2712–15. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.2712.

Der volle Inhalt der Quelle
Annotation:
The earth's crust Cluck value, the shale abundance value, the sandstone abundance value and so on may become in the weight earth's crust in the different land sector and the rock type the element centralism dispersible standard, becomes the more general geochemistry reference baseline, but uses the above baseline the shortcoming not to consider the natural geochemistry change. When specific area, under the specific geological background conducts the environment geochemistry research, uses the above geochemistry reference baseline the limitation to be more obvious. On the contrary, the environment geochemistry baseline represents in the humanity moves disturbs the local some place prompt survey the element density, is in the research or in monitor plan some specific time some medium the element density, usually is not in the true sense background. Therefore uses the science reasonable method determination soil environment geochemistry baseline, by determined the chemical element nature distribution the spatial variation, is understood the surface environmental pollution and the worsened degree, forecast and monitors the whole world environmental variation the foundation. Therefore, carries out the geochemistry baseline research is an extremely urgent duty. This article will use the statistical method to establish in the Yanzhou mining area surface layer soil heavy metal element As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn environment geochemistry baseline.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Italiano, Francesco, Andrzej Solecki, Giovanni Martinelli, Yunpeng Wang und Guodong Zheng. „New Applications in Gas Geochemistry“. Geofluids 2020 (02.07.2020): 1–3. http://dx.doi.org/10.1155/2020/4976190.

Der volle Inhalt der Quelle
Annotation:
Gases present in the Earth crust are important in various branches of human activities. Hydrocarbons are a significant energy resource, helium is applied in many high-tech instruments, and studies of crustal gas dynamics provide insight in the geodynamic processes and help monitor seismic and volcanic hazards. Quantitative analysis of methane and CO2 migration is important for climate change studies. Some of them are toxic (H2S, CO2, CO); radon is responsible for the major part of human radiation dose. The development of analytical techniques in gas geochemistry creates opportunities of applying this science in numerous fields. Noble gases, hydrocarbons, CO2, N2, H2, CO, and Hg vapor are measured by advanced methods in various environments and matrices including fluid inclusions. Following the “Geochemical Applications of Noble Gases”(2009), “Frontiers in Gas Geochemistry” (2013), and “Progress in the Application of Gas Geochemistry to Geothermal, Tectonic and Magmatic Studies” (2017) published as special issues of Chemical Geology and “Gas geochemistry: From conventional to unconventional domains” (2018) published as a special issue of Marine and Petroleum Geology, this volume continues the tradition of publishing papers reflecting the diversity in scope and application of gas geochemistry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Vorontsov, A. A., M. I. Kuzmin, A. B. Perepelov und V. S. Shatsky. „Modern Lines in Geochemistry: Anniversary Conference“. Russian Geology and Geophysics 65, Nr. 3 (01.03.2024): 299–301. http://dx.doi.org/10.2113/rgg20234695.

Der volle Inhalt der Quelle
Annotation:
Abstract —On 21–25 November, 2022, Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences (Irkutsk), organized and held an All-Russian conference celebrating the 65th anniversary since the foundation of the Institute and the 105th anniversary since the birth of its first director, Academician Lev Vladimirovich Tauson, who headed the Institute from 1961 to 1989. The results reported at the conference encompass a wide range of research fields in modern geochemistry, including isotope geochemistry of igneous, metamorphic, and sedimentary rocks in various geodynamic settings; chemistry of ore-magmatic systems and modern methods of mineral exploration; environmental geochemistry, geoecology, and paleoclimate; laboratory modeling and thermodynamic calculations of natural and production-related processes and materials; advanced analytical methods and information technologies for geosciences. The conference presentations pay tribute to Lev Tauson whose academic carrier, as well as all creative activity, had been closely related with the development of the Institute of Geochemistry. The preface paper provides a review of topics discussed at the conference concerning various geodynamic and geochemical problems, including sources of material, petrogenesis, and metallogeny.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Martin, M. H., und I. Thornton. „Applied Environmental Geochemistry.“ Journal of Applied Ecology 22, Nr. 3 (Dezember 1985): 1028. http://dx.doi.org/10.2307/2403267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Kalsbeek, F. „Geochemistry in GGU“. Rapport Grønlands Geologiske Undersøgelse 148 (01.01.1990): 43–45. http://dx.doi.org/10.34194/rapggu.v148.8118.

Der volle Inhalt der Quelle
Annotation:
Chemical analyses are essential for many of GGU's activities, especially in the search and evaluation of mineral resources and in the study of rock units. GGU has a well-equipped laboratory for the analysis of rock material, and has a close cooperation with laboratories belonging to the Department of Geology of the University of Copenhagen and the Risø National Laboratory, Denmark.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Shimizu, Hiroshi. „Processes in Geochemistry“. TRENDS IN THE SCIENCES 10, Nr. 1 (2005): 96–97. http://dx.doi.org/10.5363/tits.10.96.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Qin, Liping, und Xiangli Wang. „Chromium Isotope Geochemistry“. Reviews in Mineralogy and Geochemistry 82, Nr. 1 (2017): 379–414. http://dx.doi.org/10.2138/rmg.2017.82.10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Rouxel, Olivier J., und Béatrice Luais. „Germanium Isotope Geochemistry“. Reviews in Mineralogy and Geochemistry 82, Nr. 1 (2017): 601–56. http://dx.doi.org/10.2138/rmg.2017.82.14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Penniston-Dorland, Sarah, Xiao-Ming Liu und Roberta L. Rudnick. „Lithium Isotope Geochemistry“. Reviews in Mineralogy and Geochemistry 82, Nr. 1 (2017): 165–217. http://dx.doi.org/10.2138/rmg.2017.82.6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Teng, Fang-Zhen. „Magnesium Isotope Geochemistry“. Reviews in Mineralogy and Geochemistry 82, Nr. 1 (2017): 219–87. http://dx.doi.org/10.2138/rmg.2017.82.7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Poitrasson, Franck. „Silicon Isotope Geochemistry“. Reviews in Mineralogy and Geochemistry 82, Nr. 1 (2017): 289–344. http://dx.doi.org/10.2138/rmg.2017.82.8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Barnes, Jaime D., und Zachary D. Sharp. „Chlorine Isotope Geochemistry“. Reviews in Mineralogy and Geochemistry 82, Nr. 1 (2017): 345–78. http://dx.doi.org/10.2138/rmg.2017.82.9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Savenko, V. S. „Ecology in geochemistry“. Moscow University Geology Bulletin 66, Nr. 3 (Juni 2011): 163–70. http://dx.doi.org/10.3103/s0145875211030100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Smith, H. J. „GEOCHEMISTRY: Cultured Carbonate“. Science 290, Nr. 5500 (22.12.2000): 2215c—2215. http://dx.doi.org/10.1126/science.290.5500.2215c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Rowan, L. „GEOCHEMISTRY: Bacterial Spelunkers“. Science 304, Nr. 5672 (07.05.2004): 799a. http://dx.doi.org/10.1126/science.304.5672.799a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Yeston, J. „GEOCHEMISTRY: Postdiluvian Pb“. Science 314, Nr. 5803 (24.11.2006): 1218d—1219d. http://dx.doi.org/10.1126/science.314.5803.1218d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

O'Day, Peggy A. „Molecular environmental geochemistry“. Reviews of Geophysics 37, Nr. 2 (Mai 1999): 249–74. http://dx.doi.org/10.1029/1998rg900003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Hanson, B. „GEOCHEMISTRY: Shifting Grasses“. Science 310, Nr. 5752 (25.11.2005): 1247d. http://dx.doi.org/10.1126/science.310.5752.1247d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Anonymous. „Trace element geochemistry“. Eos, Transactions American Geophysical Union 66, Nr. 13 (1985): 137. http://dx.doi.org/10.1029/eo066i013p00137-05.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Hanson, B. „GEOCHEMISTRY: Team Effort“. Science 320, Nr. 5881 (06.06.2008): 1263a. http://dx.doi.org/10.1126/science.320.5881.1263a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Hostettler, John D. „Geochemistry for chemists“. Journal of Chemical Education 62, Nr. 10 (Oktober 1985): 823. http://dx.doi.org/10.1021/ed062p823.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

ELLIOTT, HERSCHEL A. „Applied Environmental Geochemistry“. Soil Science 140, Nr. 4 (Oktober 1985): 307. http://dx.doi.org/10.1097/00010694-198510000-00015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Hanson, B. „GEOCHEMISTRY: Elemental Traces“. Science 307, Nr. 5713 (25.02.2005): 1171d. http://dx.doi.org/10.1126/science.307.5713.1171d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Smith, H. J. „GEOCHEMISTRY: Dating Service“. Science 307, Nr. 5717 (25.03.2005): 1841b. http://dx.doi.org/10.1126/science.307.5717.1841b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Galimov, E. M. „Isotope organic geochemistry“. Organic Geochemistry 37, Nr. 10 (Oktober 2006): 1200–1262. http://dx.doi.org/10.1016/j.orggeochem.2006.04.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie