Zeitschriftenartikel zum Thema „Genetics engineering“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Genetics engineering.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Genetics engineering" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Sprenger, G. A., M. A. Typas und C. Drainas. „Genetics and genetic engineering ofZymomonas mobilis“. World Journal of Microbiology & Biotechnology 9, Nr. 1 (Januar 1993): 17–24. http://dx.doi.org/10.1007/bf00656509.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kuchuk, N. V. „Cell genetic engineering: Transmission genetics of plants“. Cytology and Genetics 51, Nr. 2 (März 2017): 103–7. http://dx.doi.org/10.3103/s0095452717020062.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Womack, James E. „Genetic engineering in agriculture: animal genetics and development“. Trends in Genetics 3 (Januar 1987): 65–68. http://dx.doi.org/10.1016/0168-9525(87)90177-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

KU, In-Hoe. „Ethical Problems of Genetic Engineering and Responsibilities of Geneticists“. Korean Journal of Medical Ethics 3, Nr. 2 (November 2000): 183–97. http://dx.doi.org/10.35301/ksme.2000.3.2.183.

Der volle Inhalt der Quelle
Annotation:
The development of molecular genetics has provided tools not only for the diagnosis of genetic diseases and disease dispositions in affected individuals, but also for the detection of healthy carriers of recessive hereditary traits. The growth in DNA data banks threatens individual privacy, as competing private medical and life insurance companies already do. With a growing number of diseases we can expect more cases of exclusion unless anti-discrimination laws for insurance companies are introduced. Social policy must decide how to preserve privacy and prevent discrimination by employers and insurance companies. A geneticist has a very responsible position in processes and sequences of genetics developments, therefore he must warn against inappropriate use by uninformed public.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Harvey, J. „Genetic Engineering“. Journal of Medical Genetics 30, Nr. 8 (01.08.1993): 711–12. http://dx.doi.org/10.1136/jmg.30.8.711-b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Little, Peter. „Genetic engineering“. Trends in Genetics 5 (1989): 198. http://dx.doi.org/10.1016/0168-9525(89)90078-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dorin, Julia R. „Genetic engineering“. Trends in Genetics 9, Nr. 9 (September 1993): 327. http://dx.doi.org/10.1016/0168-9525(93)90254-f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tangngareng, Tasmim, Irwan Abdullah, Rahman Rahman und Sawaluddin Sawaluddin. „THE CONSTRUCTION OF HADITH ADDRESSING GENETIC ENGINEERING OF HUMANS“. Jurnal Ilmiah Islam Futura 23, Nr. 1 (21.06.2023): 20. http://dx.doi.org/10.22373/jiif.v23i1.14716.

Der volle Inhalt der Quelle
Annotation:
This paper explores positions of hadith and ethics in discussing the genetic engineering of humans by departing from the following questions: a) how do hadith contribute to constructing various aspects of human genetics? b) how did the social context around Prophet Muhammad affect the construction of the hadith? c) how do hadith addressing human genetics relate to scientific development? This paper reveals that the ethics and process of genetic engineering are prescribed in the hadith, illuminating the contextual debates of its time. Issues of genetics that arise in the discourse of human existence, particularly regarding sex and skin color, show a contestation of values related to the position of genetic factors as undeniable. Scientific development provides answers to the increasingly complex and contestatory discourse on genetics and necessitates a paradigm shift in the Muslim community, which often places hadith as a believed and practiced textual truth
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shapiro, James A. „LettingEscherichia coliTeach Me About Genome Engineering“. Genetics 183, Nr. 4 (Dezember 2009): 1205–14. http://dx.doi.org/10.1534/genetics.109.110007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Carroll, Dana. „Genome Engineering With Zinc-Finger Nucleases“. Genetics 188, Nr. 4 (August 2011): 773–82. http://dx.doi.org/10.1534/genetics.111.131433.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Frederickson, Robert. „Chemical genetics and tissue engineering“. Nature Biotechnology 18, Nr. 3 (März 2000): 250. http://dx.doi.org/10.1038/73639.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Malcolm, S. „Genetic Engineering 7“. Journal of Medical Genetics 27, Nr. 5 (01.05.1990): 341. http://dx.doi.org/10.1136/jmg.27.5.341-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Nusse, R. „Genetic Engineering 5“. Trends in Genetics 3 (Januar 1987): 29. http://dx.doi.org/10.1016/0168-9525(87)90161-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Teriyapirom, Isaree, Andreia S. Batista-Rocha und Bon-Kyoung Koo. „Genetic engineering in organoids“. Journal of Molecular Medicine 99, Nr. 4 (18.01.2021): 555–68. http://dx.doi.org/10.1007/s00109-020-02029-z.

Der volle Inhalt der Quelle
Annotation:
AbstractThree-dimensional organoids have been widely used for developmental and disease modeling. Organoids are derived from both adult and pluripotent stem cells. Various types are available for mimicking almost all major organs and tissues in the mouse and human. While culture protocols for stepwise differentiation and long-term expansion are well established, methods for genetic manipulation in organoids still need further standardization. In this review, we summarized different methods for organoid genetics and provide the pros and cons of each method for designing an optimal strategy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Golic, Kent G., und Mary M. Golic. „Engineering the Drosophila Genome: Chromosome Rearrangements by Design“. Genetics 144, Nr. 4 (01.12.1996): 1693–711. http://dx.doi.org/10.1093/genetics/144.4.1693.

Der volle Inhalt der Quelle
Annotation:
We show that site-specific recombination can be used to engineer chromosome rearrangements in Drosophila melanogaster. The FLP site-specific recombinase acts on chromosomal target sites located within specially constructed P elements to provide an easy screen for the recovery of rearrangements with breakpoints that can be chosen in advance. Paracentric and pericentric inversions are easily recovered when two elements lie in the same chromosome in opposite orientation. These inversions are readily reversible. Duplications and deficiencies can be recovered by recombination between two elements that lie in the same orientation on the same chromosome or on homologues. We observe that the frequency of recombination between FRTs at ectopic locations decreases as the distance that separates those FRTs increases. We also describe methods to determine the absolute orientation of these P elements within the chromosome. The ability to produce chromosome rearrangements precisely between preselected sites provides a powerful new tool for investigations into the relationships between chromosome arrangement, structure, and function.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Cherbas, Lucy, Jennifer Hackney, Lei Gong, Claire Salzer, Eric Mauser, Dayu Zhang und Peter Cherbas. „Tools for Targeted Genome Engineering of EstablishedDrosophilaCell Lines“. Genetics 201, Nr. 4 (08.10.2015): 1307–18. http://dx.doi.org/10.1534/genetics.115.181610.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Dickinson, D. J., und B. Goldstein. „CRISPR-Based Methods for Caenorhabditis elegans Genome Engineering“. Genetics 202, Nr. 3 (01.03.2016): 885–901. http://dx.doi.org/10.1534/genetics.115.182162.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Kennedy, Caleb J., Patrick M. Boyle, Zeev Waks und Pamela A. Silver. „Systems-Level Engineering of Nonfermentative Metabolism in Yeast“. Genetics 183, Nr. 1 (29.06.2009): 385–97. http://dx.doi.org/10.1534/genetics.109.105254.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Whitelaw, C. Bruce A., Akshay Joshi, Satish Kumar, Simon G. Lillico und Chris Proudfoot. „Genetically engineering milk“. Journal of Dairy Research 83, Nr. 1 (Februar 2016): 3–11. http://dx.doi.org/10.1017/s0022029916000017.

Der volle Inhalt der Quelle
Annotation:
It has been thirty years since the first genetically engineered animal with altered milk composition was reported. During the intervening years, the world population has increased from 5bn to 7bn people. An increasing demand for protein in the human diet has followed this population expansion, putting huge stress on the food supply chain. Many solutions to the grand challenge of food security for all have been proposed and are currently under investigation and study. Amongst these, genetics still has an important role to play, aiming to continually enable the selection of livestock with enhanced traits. Part of the geneticist's tool box is the technology of genetic engineering. In this Invited Review, we indicate that this technology has come a long way, we focus on the genetic engineering of dairy animals and we argue that the new strategies for precision breeding demand proper evaluation as to how they could contribute to the essential increases in agricultural productivity our society must achieve.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Lanigan, Thomas M., Huira C. Kopera und Thomas L. Saunders. „Principles of Genetic Engineering“. Genes 11, Nr. 3 (10.03.2020): 291. http://dx.doi.org/10.3390/genes11030291.

Der volle Inhalt der Quelle
Annotation:
Genetic engineering is the use of molecular biology technology to modify DNA sequence(s) in genomes, using a variety of approaches. For example, homologous recombination can be used to target specific sequences in mouse embryonic stem (ES) cell genomes or other cultured cells, but it is cumbersome, poorly efficient, and relies on drug positive/negative selection in cell culture for success. Other routinely applied methods include random integration of DNA after direct transfection (microinjection), transposon-mediated DNA insertion, or DNA insertion mediated by viral vectors for the production of transgenic mice and rats. Random integration of DNA occurs more frequently than homologous recombination, but has numerous drawbacks, despite its efficiency. The most elegant and effective method is technology based on guided endonucleases, because these can target specific DNA sequences. Since the advent of clustered regularly interspaced short palindromic repeats or CRISPR/Cas9 technology, endonuclease-mediated gene targeting has become the most widely applied method to engineer genomes, supplanting the use of zinc finger nucleases, transcription activator-like effector nucleases, and meganucleases. Future improvements in CRISPR/Cas9 gene editing may be achieved by increasing the efficiency of homology-directed repair. Here, we describe principles of genetic engineering and detail: (1) how common elements of current technologies include the need for a chromosome break to occur, (2) the use of specific and sensitive genotyping assays to detect altered genomes, and (3) delivery modalities that impact characterization of gene modifications. In summary, while some principles of genetic engineering remain steadfast, others change as technologies are ever-evolving and continue to revolutionize research in many fields.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Rossant, Janet, und Andras Nagy. „Genome engineering: the new mouse genetics“. Nature Medicine 1, Nr. 6 (Juni 1995): 592–94. http://dx.doi.org/10.1038/nm0695-592.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Kee, Yun, und Nam-Soo Kim. „Meeting report: genetics and genome engineering“. Genes & Genomics 35, Nr. 4 (07.05.2013): 411–13. http://dx.doi.org/10.1007/s13258-013-0109-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Gratz, Scott J., Alexander M. Cummings, Jennifer N. Nguyen, Danielle C. Hamm, Laura K. Donohue, Melissa M. Harrison, Jill Wildonger und Kate M. O’Connor-Giles. „Genome Engineering ofDrosophilawith the CRISPR RNA-Guided Cas9 Nuclease“. Genetics 194, Nr. 4 (24.05.2013): 1029–35. http://dx.doi.org/10.1534/genetics.113.152710.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Hoey, Elizabeth. „Genetic Engineering“. FEBS Letters 250, Nr. 1 (19.06.1989): 115. http://dx.doi.org/10.1016/0014-5793(89)80694-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Johar, Prerna, und R. K. Salgotra. „Elementary and Advanced Mechanisms for Genetic Engineering in Crops“. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY 24, Nr. 7-8 (29.12.2023): 33–43. http://dx.doi.org/10.56557/pcbmb/2023/v24i7-88481.

Der volle Inhalt der Quelle
Annotation:
Presently, the field of plant breeding is in the genomics era, where innovative techniques are being integrated to accelerate and enhance the efficiency of breeding. Traditional plant breeding methods rely on maintaining plant germplasm with desirable agronomic traits from distinct plants produced through crosses or mutagenesis. However, advancements in genetic engineering encompass all forms of genetic modification through recombinant DNA technology (RDT) and cell fusion mechanisms. These approaches shed light on areas involving mutant organisms, DNA replication, genetic linkage resolution, genetically modified organisms (GMOs), protein sequencing, functional genomics, and computational genomics alterations in genetic engineering. The integration of structural genomics into breeding and eugenics analysis has resulted in a vast knowledge base on crop genetics, species divergence, and molecular origin of traits, as well as the evolutionary history of crop lineage from ancient ancestral species. The genomic data and advancements have proven essential in identifying rare genes, alleles, or local lesions crucial to significant agronomic traits, thereby expediting breeding cycles. This article aims to explore the potential of emerging genetic engineering technologies, including synthetic biology and genome editing, to further advance crop genetics and plant breeding.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Drãger, Birgit. „Genetic engineering“. Transgenic Research 4, Nr. 3 (Mai 1995): 214. http://dx.doi.org/10.1007/bf01968787.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Frøkjær-Jensen, Christian. „Exciting Prospects for Precise Engineering ofCaenorhabditis elegansGenomes with CRISPR/Cas9“. Genetics 195, Nr. 3 (November 2013): 635–42. http://dx.doi.org/10.1534/genetics.113.156521.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Dickinson, Daniel J., Ariel M. Pani, Jennifer K. Heppert, Christopher D. Higgins und Bob Goldstein. „Streamlined Genome Engineering with a Self-Excising Drug Selection Cassette“. Genetics 200, Nr. 4 (03.06.2015): 1035–49. http://dx.doi.org/10.1534/genetics.115.178335.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Subbaiah, Edupalli V., Corinne Royer, Sriramana Kanginakudru, Valluri V. Satyavathi, Adari Sobhan Babu, Vankadara Sivaprasad, Gérard Chavancy et al. „Engineering Silkworms for Resistance to Baculovirus Through Multigene RNA Interference“. Genetics 193, Nr. 1 (26.10.2012): 63–75. http://dx.doi.org/10.1534/genetics.112.144402.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Elder, Robert T. „Yeast genetic engineering“. Cell 60, Nr. 4 (Februar 1990): 531–32. http://dx.doi.org/10.1016/0092-8674(90)90654-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

COGGON, JOHN. „Confrontations in “Genethics”: Rationalities, Challenges, and Methodological Responses“. Cambridge Quarterly of Healthcare Ethics 20, Nr. 1 (Januar 2011): 46–55. http://dx.doi.org/10.1017/s0963180110000617.

Der volle Inhalt der Quelle
Annotation:
It was only a matter of time before the portmanteau term “genethics” would be coined and a whole field within bioethics delineated. The term can be dated back at least to 1984 and the work of James Nagle, who claims credit for inventing the word, which he takes “to incorporate the various ethical implications and dilemmas generated by genetic engineering with the technologies and applications that directly or indirectly affect the human species.” In Nagle’s phrase, “Genethic issues are instances where medical genetics and biotechnology generate ethical problems that warrant societal deliberation.” The great promises and terrific threats of developments in scientific understanding of genetics, and the power to enhance, modify, or profit from the knowledge science breeds, naturally offer a huge range of issues to vex moral philosophers and social theorists. Issues as diverse as embryo selection and the quest for immortality continue to tax analysts, who offer reasons as varied as the matters that might be dubbed “genethical” for or against the morality of things that are actually possible, logically possible, and even just tenuously probable science fiction.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Bier, Ethan, Melissa M. Harrison, Kate M. O’Connor-Giles und Jill Wildonger. „Advances in Engineering the Fly Genome with the CRISPR-Cas System“. Genetics 208, Nr. 1 (Januar 2018): 1–18. http://dx.doi.org/10.1534/genetics.117.1113.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Wilkie, A. „Genetic Engineering. Principles and Methods“. Journal of Medical Genetics 32, Nr. 11 (01.11.1995): 919–20. http://dx.doi.org/10.1136/jmg.32.11.919-b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Shaw, D. „Genetic Engineering--Principles and Methods“. Journal of Medical Genetics 23, Nr. 4 (01.08.1986): 380–81. http://dx.doi.org/10.1136/jmg.23.4.380-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Temple, K., und S. Malcolm. „A Dictionary of Genetic Engineering“. Journal of Medical Genetics 24, Nr. 11 (01.11.1987): 717. http://dx.doi.org/10.1136/jmg.24.11.717.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Chan, Simon W. L. „Chromosome engineering: power tools for plant genetics“. Trends in Biotechnology 28, Nr. 12 (Dezember 2010): 605–10. http://dx.doi.org/10.1016/j.tibtech.2010.09.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Burke, Donald S., Kenneth A. De Jong, John J. Grefenstette, Connie Loggia Ramsey und Annie S. Wu. „Putting More Genetics into Genetic Algorithms“. Evolutionary Computation 6, Nr. 4 (Dezember 1998): 387–410. http://dx.doi.org/10.1162/evco.1998.6.4.387.

Der volle Inhalt der Quelle
Annotation:
The majority of current genetic algorithms (GAs), while inspired by natural evolutionary systems, are seldom viewed as biologically plausible models. This is not a criticism of GAs, but rather a reflection of choices made regarding the level of abstraction at which biological mechanisms are modeled, and a reflection of the more engineering-oriented goals of the evolutionary computation community. Understanding better and reducing this gap between GAs and genetics has been a central issue in an interdisciplinary project whose goal is to build GA-based computational models of viral evolution. The result is a system called Virtual Virus (VIV). VIV incorporates a number of more biologically plausible mechanisms, including a more flexible genotype-to-phenotype mapping. In VIV the genes are independent of position, and genomes can vary in length and may contain noncoding regions, as well as duplicative or competing genes. Initial computational studies with VIV have already revealed several emergent phenomena of both biological and computational interest. In the absence of any penalty based on genome length, VIV develops individuals with long genomes and also performs more poorly (from a problem-solving viewpoint) than when a length penalty is used. With a fixed linear length penalty, genome length tends to increase dramatically in the early phases of evolution and then decrease to a level based on the mutation rate. The plateau genome length (i.e., the average length of individuals in the final population) generally increases in response to an increase in the base mutation rate. When VIV converges, there tend to be many copies of good alternative genes within the individuals. We observed many instances of switching between active and inactive genes during the entire evolutionary process. These observations support the conclusion that noncoding regions serve as scratch space in which VIV can explore alternative gene values. These results represent a positive step in understanding how GAs might exploit more of the power and flexibility of biological evolution while simultaneously providing better tools for understanding evolving biological systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Court, Donald L., James A. Sawitzke und Lynn C. Thomason. „Genetic Engineering Using Homologous Recombination“. Annual Review of Genetics 36, Nr. 1 (Dezember 2002): 361–88. http://dx.doi.org/10.1146/annurev.genet.36.061102.093104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Park, Ki-Eun, und Bhanu Prakash V. L. Telugu. „Role of stem cells in large animal genetic engineering in the TALENs–CRISPR era“. Reproduction, Fertility and Development 26, Nr. 1 (2014): 65. http://dx.doi.org/10.1071/rd13258.

Der volle Inhalt der Quelle
Annotation:
The establishment of embryonic stem cells (ESCs) and gene targeting technologies in mice has revolutionised the field of genetics. The relative ease with which genes can be knocked out, and exogenous sequences introduced, has allowed the mouse to become the prime model for deciphering the genetic code. Not surprisingly, the lack of authentic ESCs has hampered the livestock genetics field and has forced animal scientists into adapting alternative technologies for genetic engineering. The recent discovery of the creation of induced pluripotent stem cells (iPSCs) by upregulation of a handful of reprogramming genes has offered renewed enthusiasm to animal geneticists. However, much like ESCs, establishing authentic iPSCs from the domestic animals is still beset with problems, including (but not limited to) the persistent expression of reprogramming genes and the lack of proven potential for differentiation into target cell types both in vitro and in vivo. Site-specific nucleases comprised of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulated interspaced short palindromic repeats (CRISPRs) emerged as powerful genetic tools for precisely editing the genome, usurping the need for ESC-based genetic modifications even in the mouse. In this article, in the aftermath of these powerful genome editing technologies, the role of pluripotent stem cells in livestock genetics is discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Pflügl, Stefan, Hans Marx, Diethard Mattanovich und Michael Sauer. „Genetic engineering ofLactobacillus diolivorans“. FEMS Microbiology Letters 344, Nr. 2 (23.05.2013): 152–58. http://dx.doi.org/10.1111/1574-6968.12168.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Schofield, Zoe, Gabriel N. Meloni, Peter Tran, Christian Zerfass, Giovanni Sena, Yoshikatsu Hayashi, Murray Grant et al. „Bioelectrical understanding and engineering of cell biology“. Journal of The Royal Society Interface 17, Nr. 166 (Mai 2020): 20200013. http://dx.doi.org/10.1098/rsif.2020.0013.

Der volle Inhalt der Quelle
Annotation:
The last five decades of molecular and systems biology research have provided unprecedented insights into the molecular and genetic basis of many cellular processes. Despite these insights, however, it is arguable that there is still only limited predictive understanding of cell behaviours. In particular, the basis of heterogeneity in single-cell behaviour and the initiation of many different metabolic, transcriptional or mechanical responses to environmental stimuli remain largely unexplained. To go beyond the status quo , the understanding of cell behaviours emerging from molecular genetics must be complemented with physical and physiological ones, focusing on the intracellular and extracellular conditions within and around cells. Here, we argue that such a combination of genetics, physics and physiology can be grounded on a bioelectrical conceptualization of cells. We motivate the reasoning behind such a proposal and describe examples where a bioelectrical view has been shown to, or can, provide predictive biological understanding. In addition, we discuss how this view opens up novel ways to control cell behaviours by electrical and electrochemical means, setting the stage for the emergence of bioelectrical engineering.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Johnson, B. „Genescapes: The Ecology of Genetic Engineering“. Heredity 90, Nr. 3 (März 2003): 203. http://dx.doi.org/10.1038/sj.hdy.6800199.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Sambrook, Joseph, und David W. Russell. „Genetic Engineering with PCR“. Cold Spring Harbor Protocols 2006, Nr. 1 (Juni 2006): pdb.prot3836. http://dx.doi.org/10.1101/pdb.prot3836.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Dymond, Jessica S., Lisa Z. Scheifele, Sarah Richardson, Pablo Lee, Srinivasan Chandrasegaran, Joel S. Bader und Jef D. Boeke. „Teaching Synthetic Biology, Bioinformatics and Engineering to Undergraduates: The Interdisciplinary Build-a-Genome Course“. Genetics 181, Nr. 1 (17.11.2008): 13–21. http://dx.doi.org/10.1534/genetics.108.096784.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Bateman, Jack R., Michael F. Palopoli, Sarah T. Dale, Jennifer E. Stauffer, Anita L. Shah, Justine E. Johnson, Conor W. Walsh, Hanna Flaten und Christine M. Parsons. „Captured Segment Exchange: A Strategy for Custom Engineering Large Genomic Regions in Drosophila melanogaster“. Genetics 193, Nr. 2 (12.11.2012): 421–30. http://dx.doi.org/10.1534/genetics.112.145748.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

H. Wani, Shabir, Nadia Haider, Hitesh Kumar und N. B. Singh. „Plant Plastid Engineering“. Current Genomics 11, Nr. 7 (01.11.2010): 500–512. http://dx.doi.org/10.2174/138920210793175912.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Liu, Tiangang, und Chaitan Khosla. „Genetic Engineering ofEscherichia colifor Biofuel Production“. Annual Review of Genetics 44, Nr. 1 (Dezember 2010): 53–69. http://dx.doi.org/10.1146/annurev-genet-102209-163440.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Lee, Joungmin. „Lessons from Clostridial Genetics: Toward Engineering Acetogenic Bacteria“. Biotechnology and Bioprocess Engineering 26, Nr. 6 (Dezember 2021): 841–58. http://dx.doi.org/10.1007/s12257-021-0062-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Denkena, Berend, Helge Henning und Leif-Erik Lorenzen. „Genetics and intelligence: new approaches in production engineering“. Production Engineering 4, Nr. 1 (17.11.2009): 65–73. http://dx.doi.org/10.1007/s11740-009-0191-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Houlihan, Gillian, Sebastian Arangundy-Franklin und Philipp Holliger. „Engineering and application of polymerases for synthetic genetics“. Current Opinion in Biotechnology 48 (Dezember 2017): 168–79. http://dx.doi.org/10.1016/j.copbio.2017.04.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie