Auswahl der wissenschaftlichen Literatur zum Thema „Genetics engineering“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Genetics engineering" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Genetics engineering"

1

Sprenger, G. A., M. A. Typas und C. Drainas. „Genetics and genetic engineering ofZymomonas mobilis“. World Journal of Microbiology & Biotechnology 9, Nr. 1 (Januar 1993): 17–24. http://dx.doi.org/10.1007/bf00656509.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kuchuk, N. V. „Cell genetic engineering: Transmission genetics of plants“. Cytology and Genetics 51, Nr. 2 (März 2017): 103–7. http://dx.doi.org/10.3103/s0095452717020062.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Womack, James E. „Genetic engineering in agriculture: animal genetics and development“. Trends in Genetics 3 (Januar 1987): 65–68. http://dx.doi.org/10.1016/0168-9525(87)90177-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

KU, In-Hoe. „Ethical Problems of Genetic Engineering and Responsibilities of Geneticists“. Korean Journal of Medical Ethics 3, Nr. 2 (November 2000): 183–97. http://dx.doi.org/10.35301/ksme.2000.3.2.183.

Der volle Inhalt der Quelle
Annotation:
The development of molecular genetics has provided tools not only for the diagnosis of genetic diseases and disease dispositions in affected individuals, but also for the detection of healthy carriers of recessive hereditary traits. The growth in DNA data banks threatens individual privacy, as competing private medical and life insurance companies already do. With a growing number of diseases we can expect more cases of exclusion unless anti-discrimination laws for insurance companies are introduced. Social policy must decide how to preserve privacy and prevent discrimination by employers and insurance companies. A geneticist has a very responsible position in processes and sequences of genetics developments, therefore he must warn against inappropriate use by uninformed public.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Harvey, J. „Genetic Engineering“. Journal of Medical Genetics 30, Nr. 8 (01.08.1993): 711–12. http://dx.doi.org/10.1136/jmg.30.8.711-b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Little, Peter. „Genetic engineering“. Trends in Genetics 5 (1989): 198. http://dx.doi.org/10.1016/0168-9525(89)90078-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dorin, Julia R. „Genetic engineering“. Trends in Genetics 9, Nr. 9 (September 1993): 327. http://dx.doi.org/10.1016/0168-9525(93)90254-f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tangngareng, Tasmim, Irwan Abdullah, Rahman Rahman und Sawaluddin Sawaluddin. „THE CONSTRUCTION OF HADITH ADDRESSING GENETIC ENGINEERING OF HUMANS“. Jurnal Ilmiah Islam Futura 23, Nr. 1 (21.06.2023): 20. http://dx.doi.org/10.22373/jiif.v23i1.14716.

Der volle Inhalt der Quelle
Annotation:
This paper explores positions of hadith and ethics in discussing the genetic engineering of humans by departing from the following questions: a) how do hadith contribute to constructing various aspects of human genetics? b) how did the social context around Prophet Muhammad affect the construction of the hadith? c) how do hadith addressing human genetics relate to scientific development? This paper reveals that the ethics and process of genetic engineering are prescribed in the hadith, illuminating the contextual debates of its time. Issues of genetics that arise in the discourse of human existence, particularly regarding sex and skin color, show a contestation of values related to the position of genetic factors as undeniable. Scientific development provides answers to the increasingly complex and contestatory discourse on genetics and necessitates a paradigm shift in the Muslim community, which often places hadith as a believed and practiced textual truth
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shapiro, James A. „LettingEscherichia coliTeach Me About Genome Engineering“. Genetics 183, Nr. 4 (Dezember 2009): 1205–14. http://dx.doi.org/10.1534/genetics.109.110007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Carroll, Dana. „Genome Engineering With Zinc-Finger Nucleases“. Genetics 188, Nr. 4 (August 2011): 773–82. http://dx.doi.org/10.1534/genetics.111.131433.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Genetics engineering"

1

Conradie, E. C. (Elizabeth Cornelia). „Promotor engineering in Saccharomyces cerevisiae for transcriptional control under different physiological conditions“. Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/16512.

Der volle Inhalt der Quelle
Annotation:
Dissertation (PhD)--University of Stellenbosch, 2005.
ENGLISH ABSTRACT: To manipulate recombinant microorganisms for industrial processes, controllable genetic systems are needed that can coordinate expression of recombinant metabolic pathways. All components are sensitive to change and thus putative targets for modification and genetic elements and regulatory systems need to be understood and determined. Central in gene regulation is the transcription activators that mediate gene transcription mechanisms by binding to promoters in response to environmental signals. Promoter engineering entails the modification of transcription factors and their target promoters. In this study, a metabolic control system in Saccharomyces cerevisiae was constructed that would allow induction in response to physiological environment, specifically hypoxia and low temperature conditions. Two approaches were undertaken to find such a system. Firstly, a bi-directional reporter gene cloning vector was designed to search for novel hypoxiainducible promoters. Secondly, a transcription regulatory circuit was built, consisting of an inducible transcription regulator and promoter with a reporter gene through which it mediates transcription. Advantage was taken of the modular nature of proteins and functional domains originating from different transcriptional proteins were combined. A search for promoter elements sensitive to hypoxia from a S. cerevisiae genomic DNA (gDNA) library, using a bi-directional cloning vector, did not yield highly inducible promoters. It was concluded that a multitude of signals overlap, rendering genetic induction difficult to control. A synthetic regulatory system would minimize the impact of these multiple interactions. Such a genetic circuit was constructed, consisting of a chimeric transcription activator and a target fusion promoter. The chimeric transcription activator consisted of the GAL4 DNA binding domain, ADR1 TADIII transactivation domain and three domains of the MGA2 regulatory protein. The functional domains of Mga2p responsible for unregulated expression (at high basal levels) under both aerobic and hypoxia conditions were located, as well as a further upregulation under low temperature, and were mapped to the Nterminal and mid-Mga2p regions. A target fusion promoter consisting of a partial GAL10/1 promoter sequence and a Trichoderma reesei core xyn2 promoter were constructed as target for this chimeric transactivator. This synthetic promoter was fused to the T. reesei xyn2 open reading frame encoding for a readily assayable β-xylanase activity. Both the chimeric transactivator and fusion promoter-reporter gene cassettes were expressed from the same episomal plasmid, named pAR. Transformed into S. cerevisiae Y294, this regulatory system induced transcription under aerobic and hypoxia conditions. Furthermore, the reporter gene expression was upregulated by the chimeric transactivator at low temperatures. The chimeric transactivator mediated a seven-fold induction of the reporter gene under aerobic conditions in S. cerevisiae Y294 when transformed with plasmid AR. A two- to three-fold induction at 23ºC was reported under anaerobic conditions, relative to a reference strain expressing a transcription activator without the Mga2p domains. At 30ºC, a two- to three-fold induction under aerobic conditions and similar induction under oxygen-limited conditions were observed. Replacing the reporter gene with your favorite gene (for example a recombinant enzyme) and incorporating such a pAR system into a recombinant yeast should induce expression of the chosen gene under low temperatures, both aerobic and anaerobically (thus creating a controllable system). The system also has wider application in identifying other transcription factors’ signal-sensitive domains. The design of this system provides the ability to add a linker to a transactivator and to either create specific signal sensitivity or relieve the regulator of its signal dependence. It creates an easy system for assessing other transactivators and their domains with unknown functions and thus provides a ”workhorse and prospector in one”.
AFRIKAANSE OPSOMMING: Vir die manipulering van rekombinante mikroörganismes vir industriële prosesse word beheerbare genetiese stelsels benodig om gekoördineerde uitdrukking van rekombinante metaboliese weë teweeg te bring. Alle komponente van sulke stelsels is sensitief vir verandering en genetiese elemente en reguleerbare sisteme moet dus deeglik verstaan of bepaal word. Sentraal tot geenregulering is die transkripsie-aktiveerders wat geentranskripsie beheer deur aan promoters te bind in reaksie op eksterne omgewingsfaktore. Promotoringenieurswese behels wysigings van transkripsiefaktore en hul teikenpromotors. In hierdie studie is 'n genetiese beheerstelsel vir Saccaromyces cerevisiae ontwikkel wat induksie in reaksie tot spesifieke fisiologiese omgewingreaksies, naamlik hipoksie- en lae temperatuur, toelaat. Twee benaderings is gevolg: eerstens is ‘n tweerigting verklikker-geen vektor ontwikkel en gebruik om vir unieke induseerbare hipoksie-promoters te soek. Tweedens is ‘n transkripsie reguleringstelsel gebou wat uit ‘n induseerbare transkripsiereguleerder and promotor met ‘n verklikkergeen bestaan, waardeur transkripsie bemiddel kan word. Hierdie benadering benut die modulêre onderbou van proteïene en funksionele domeine afkomstig vanaf verskillende transkripsiefaktore is gekombineer. 'n Soektog na hipoksie-sensitiewe promotors vanuit 'n Saccharomyces cerevisiae-genoom- DNA (gDNA), deur van ‘n tweerigting verklikker-vektor gebruik te maak, het ongelukkig nie hoogs-induseerbare promotors opgelewer nie. Die gevolgtrekking was dat ‘n veelvoud van seine met mekaar oorvleuel en die beheer van genetiese induksie dus bemoeilik. Die ontwikkeling van ‘n sintetiese regulering-sisteem kan die impak van die veelvuldige interaksies verminder. Vir dié doel is ‘n sintetiese reguleringstelsel ontwerp, bestaande uit ‘n chimeriese transkripsie-aktiveerder met ‘n teiken fusie-promotor. Die chimeriese transaktiveerder bestaan uit die GAL4 DNA bindingsdomein, die ADR1 TAD III transaktiveringsdomein en drie domeine van die Mga2 reguleringsproteïen. In die studie is die funksionele domeins van Mga2p betrokke by lae temperatuur-respons en ongereguleerde uitdrukking (teen hoë basale vlakke) onder beide aërobiese en anaërobiese toestande aangedui en is tot die N-terminaal en middel-Mga2p areas gekarteer. ‘n Teiken-fusie-promoter, bestaande uit 'n gedeeltelike GAL1/10 DNA promotoropeenvolging en ‘n Trichoderma reesei kern xyn2-promoter, is as teiken vir hierdie chimeriese transaktiveerder saamgestel. Hierdie sintetiese promotor is aan die T. reesei xyn2 oopleesraam, wat vir ‘n maklik meetbare β-xylanase aktiwiteit kodeer, gekoppel. Beide die chimeriese transaktiveerder and fusie-promoter-verklikker-geenkaset word vanaf dieselfde episomale plasmied, bekend as pAR, uitgedruk. Hierdie reguleringsisteem induseer transkripsie onder aërobiese en hipoksie toestande in S. cerevisiae Y294. Verder word die verklikkergeen se uitdrukking deur die chimeriese transaktiveerder by lae temperature verhoog. Die chimeriese transaktiveerder induseer ‘n sewe-voudige induksie van die verklikkergeen onder aërobiese toestande by 23ºC vanaf die pAR-stelsel in S. cerevisiae Y294. ‘n Twee- tot drie-voudige induksie teen 23ºC is onder hipoksie toestande gevind, relatief tot induksievlakke van ‘n verwysingstam met ‘n transaktiveerder sonder die Mga2 domeine. By 30ºC is ‘n twee- tot drie-voudige induksie onder aërobiese en lae suurstofvlakke waargeneem. Deur die verklikker geen met ‘n jou-gunsteling-geen te vervang (bv. ‘n rekombinante ensiem) en so 'n pAR-sisteem in ‘n rekombinante gis te inkorporeer, word uitdrukking onder lae temperature onder beide aërobiese- en anaërobiese toestande geïnduseer (en sodoende word ‘n reguleerbare sisteem geskep). Die sisteem het wyer toepassing om sein-sensitiewe domeine van ander transkripsiefaktore te identifiseer. Die ontwerp van die stelsel maak dit moontlik om 'n skakel tot die transaktiveerder by te voeg wat óf sensitiwiteit tot 'n spesifieke sein skep, óf die reguleerder vanaf seinafhanklikheid verlos. So word ‘n bruikbare stelsel vir die bestudering van ander transaktivators en hul domeine met onbekende funksie geskep – ‘n “werksesel en prospekteerder in een”.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wilsher, Julie Ann. „Protein engineering of chymosin“. Thesis, Birkbeck (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300804.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hill, Philip John. „PCR based gene engineering“. Thesis, University of Nottingham, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sutherland, John David. „Genetic engineering of penicillin biosynthesis“. Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253132.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hilyard, Katherine L. „Protein engineering of antibody combining sites“. Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.291278.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

黃雅誼 und Nga-yi Queenie Wong. „DNA engineering utilizing thymidylate synthase A (thyA) selection system in Escherichia coli“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31226851.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zainuddin. „Genetic transformation of wheat (Triticum aestivum L.)“. Title page, Contents and Abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09APSP/09apspz21.pdf.

Der volle Inhalt der Quelle
Annotation:
Bibliography: leaves 127-151. The successful application of genetic engineering in wheat is dependent on the availability of suitable tissue culture and transformation methods. The primary object of this project was the development of these technologies using elite Australian wheat varieties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

au, dweston@ncwa com, und Delys Eleanor Weston. „Democracy and political economy of genetic engineering“. Murdoch University, 2007. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20070327.143205.

Der volle Inhalt der Quelle
Annotation:
This thesis aims to provide a more critical framework for the assessment of future technologies and therefore social directions and to help to bring an understanding to the relationship between global political economy, corporate power, ideology, science and technology. This is essential given the many issues facing contemporary society – issues of sustainability and humanity’s place in the broad ecology, of the need for a diversity of economies, societies and cultures, of the need for greater economic equality and equity across the globe. The relationship between globalisation, science and technology, democratic governance and citizens is explored using the case of genetic engineering technologies. The thesis draws on a conceptual framework provided by the theory of political economy to facilitate the assessment of the impact of a technology on society . It provides a critical framework for looking at individualised, sectoral and short term interests versus the often conflicting interests of what is termed the ‘common good’. The juxtaposition of the neo-liberal, conservative and contemporarily dominant world view with that of the more radical, political economy stance exposes the tension between these two ways of viewing human history and the future of humankind.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

MacKenzie, Donald J. „Molecular characterization of potato virus S and genetic engineering of virus resistant plants“. Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/30622.

Der volle Inhalt der Quelle
Annotation:
The sequence of 3553 nucleotides corresponding to the 3'-terminal region of potato virus S (PVS) has been determined from cloned cDNA. The sequence obtained contains six open reading frames with the potential to encode proteins of Mr 10,734, Mr 32,515, Mr 7,222, Mr 11,802, Mr 25,092 and at least Mr 41,052. The amino acid sequence of the 33K ORF has been confirmed to be that of the viral coat protein gene. The nucleotide sequence of this ORF was obtained from expression plasmids which were isolated by binding with a specific monoclonal antibody to PVS, and the expression of coat protein fusion products was verified by Western blots of bacterial cell lysates. The deduced amino acid sequence of a 70 amino acid portion from the central region of the PVS coat protein was 59% identical to the analogous region of potato virus X. In addition, the 7K, 12K and 25K ORF's displayed significant sequence homology with similar sized ORF's from a number of potexviruses. The partial 41K ORF was homologous with the C-terminal portion of the viral replicase proteins of potato virus X and white clover mosaic virus. While the biological functions of the 12K and 25K non-structural proteins coded for by PVS and members of the potexvirus group remain unknown, the 12K protein displays a hydropathicity profile consistent with a membrane associated protein and the 25K protein contains a conserved sequence motif found in a number of nucleoside triphosphate binding proteins. Members of the carlavirus group are distinguished from the potexviruses by the presence of a small [11K (PVS, potato virus M) - 16K (lily symptomless virus)] 3' terminal ORF which appears to contain a sequence motif similar to the 'zinc-finger' domain found in many nucleic acid binding proteins. The coat protein gene from potato virus S (PVS) was introduced into Nicotiana debneyii tobacco as well as a commercial potato cultivar, 'Russet Burbank', by leaf disc transformation using Agrobacterium tumefaciens. Transgenic plants expressing the viral coat protein were highly resistant to subsequent infection following mechanical inoculation with the Andean or ME strains of PVS as indicated by a lack of accumulation of virus in the upper leaves. The coat protein mediated protection afforded by these transgenic plants was sufficient to prevent the accumulation of virus in the tissues of non-transformed 'Russet Burbank' shoots which had been grafted onto transgenic plants inoculated with PVS, and in reciprocal grafts, transgenic shoots accumulated less than 2% (6 weeks after grafting) of the concentration of PVS found in non-transformed shoots similarly grafted onto plants systemically infected with PVS. These transgenic plants also displayed a measure of resistance to inoculation with a related carlavirus from potato, potato virus M. In agreement with previous reports for plants expressing PVX coat protein, plants expressing PVS coat protein were also protected from inoculation with PVS RNA. These results provide further evidence that coat protein mediated protection for these two groups of viruses, which share similar genome organizations, may involve inhibition of some early event in infection, other than, or in addition to, virus uncoating. Specific monoclonal antibodies were prepared against a C-terminal derived 18 kDa portion of the 25K protein of PVS expressed as an in-frame chimeric fusion protein with the glutathione S-transferase gene. The in vivo expression of this non-structural protein in virus infected tissue, as well as tissue from transgenic tobacco (var Xanthi-nc) engineered to contain the entire 25K gene, was verified by Western immunoblot labelling.
Medicine, Faculty of
Biochemistry and Molecular Biology, Department of
Graduate
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Purohit, Shri Kant. „Analysis of nodulin-44 gene of soybean“. Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Genetics engineering"

1

Wexler, Barbara. Genetics and genetic engineering. 2. Aufl. Detroit, MI: Thomson/Gale Group, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Genetics and genetic engineering. 2. Aufl. Farmington Hills, Mich: Gale Cengage Learning, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yount, Lisa. Genetics and genetic engineering. New York: Facts on File, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sydney, Brenner, und Miller Jeffrey H, Hrsg. Encyclopedia of genetics. San Diego, Calif: Academic, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lakra, W. S. Genetics, genetic engineering and biotechnology in fisheries. New Delhi: Indian Council of Agricultural Research, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yount, Lisa. Modern genetics: Engineering life. New York NY: Facts on File, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bryan, Jenny. Genetic engineering. New York: Thomson Learning, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bryan, Jenny. Genetic engineering. New York: Thomson Learning, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

L, Oxender Dale, und Fox C. Fred 1937-, Hrsg. Protein engineering. New York: Liss, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tudge, Colin. The day before yesterday: Five million years of human history. London: Pimlico, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Genetics engineering"

1

Alderson, Pauline, und Martin Rowland. „Genetics, Cell Division and Genetic Engineering“. In Making Use of Biology for GCSE, 305–20. London: Macmillan Education UK, 1989. http://dx.doi.org/10.1007/978-1-349-10062-0_25.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Alderson, Pauline, und Martin Rowland. „Genetics, Cell Division, DNA and Genetic Engineering“. In Making Use of Biology, 313–33. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13563-9_25.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wurtzel, Eleanore T. „Rice Genetics: Engineering Vitamin A“. In Encyclopedia of Genetics, 668–71. New York: Routledge, 2014. http://dx.doi.org/10.4324/9781315073972-98.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Schmid, Jochen, Ulf Stahl und Vera Meyer. „Genetic and Metabolic Engineering in Filamentous Fungi“. In Physiology and Genetics, 377–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00286-1_18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Boerjan, W., H. Meyermans, C. Chen, J. C. Leplé, J. H. Christensen, J. Van Doorsselaere, M. Baucher et al. „Genetic Engineering of Lignin Biosynthesis in Poplar“. In Somatic Cell Genetics and Molecular Genetics of Trees, 81–88. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-3983-0_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Trolinder, Norma L. „Genetic Engineering of Cotton“. In Genetics and Genomics of Cotton, 187–207. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-70810-2_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Liu, Yanping, und Yongzhong Tang. „Enterprise Organizational Genetics Research“. In Enterprise Organization Engineering, 225–51. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1094-6_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rauch, Peter J. G., Oscar P. Kuipers, Roland J. Siezen und Willem M. De Vos. „Genetics and Protein Engineering of Nisin“. In Bacteriocins of Lactic Acid Bacteria, 223–49. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2668-1_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ebert, P. R., M. Altschuler und A. E. Clarke. „Molecular Genetics of Self-Incompatibility in Flowering Plants“. In Genetic Engineering, 171–81. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-7084-4_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Meyer, Peter. „Engineering of Novel Flower Colours“. In Genetics and Breeding of Ornamental Species, 285–307. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3296-1_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Genetics engineering"

1

„Site-specific genetic engineering in cereals – principles and applications“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Morgan, Jeffrey R. „Genetic Strategies for Tissue Engineering“. In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-1165.

Der volle Inhalt der Quelle
Annotation:
Abstract Recent advances in molecular genetics have resulted in the development of new technologies for the introduction and expression of genes in human somatic cells. These gene transfer technologies have given rise to a potentially new field of medical treatment known as gene therapy. Gene therapy is broadly defined as the transfer of genetic material to cells or tissues in order to achieve a therapeutic effect for inherited as well as acquired diseases. We are exploring the potential application of gene transfer technologies to the field of tissue engineering and are interested in determining if genetic modification can be used to enhance the function and/or performance of cells used as or part of biological substitutes for the restoration, maintenance or improvement of tissue function. We believe that gene transfer technologies will be an important addition to the field of tissue engineering.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Turner, Charles H. „How Microimaging Technology Is Transforming the Field of Skeletal Genetics“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33057.

Der volle Inhalt der Quelle
Annotation:
Microcomputed tomography (microCT) is emerging as the technique of choice for skeletal genetics research. The goal of these studies is to identify genes that modulate bone strength and skeletal biomechanics. Many studies use animal models, namely rats and mice. To fully characterize the skeletal phenotype, one must determine the size, shape, and microstructure of the bones preferably in three dimensions. In what follows are three examples of how μCT has been used to illuminate genetic effects on bone structure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

„New efficient gene promoters from Stellaria media for plant genetic engineering“. In Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences Novosibirsk State University, 2019. http://dx.doi.org/10.18699/icg-plantgen2019-42.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Phillips, Winfred M. „Bioengineering: From Mechanics and Devices to Tissue Engineering and Genetics“. In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/ts-23402.

Der volle Inhalt der Quelle
Annotation:
Abstract The National Institutes of Health (NIH) defines bioengineering as an interdisciplinary field that applies physical, chemical, and mathematical sciences and engineering principles to the study of biology, medicine, behavior, and health. Bioengineering advances knowledge from the molecular to the organ systems level, and develops new and novel biologics, materials, processes, implants, devices, and informational approaches for the prevention, diagnosis, and treatment of disease, for patient rehabilitation, and for improving health. Enormous contributions to the advancement of health care have been made through bioengineering. It has been instrumental in establishing the United States as the world leader in health care technology, as evidenced by a $4.6 billion trade surplus for this sector in 1993. The field, through basic and applied research and technology assessment, has given us such devices as the pacemaker, orthopedic implants, and noninvasive diagnostic imaging. Bioengineers have developed new processes for manufacturing products in the pharmaceutical and biotechnology industries. An example is the manufacturing of human insulin, the first product based on recombinant DNA technology, where bioengineering was critical to the ability to commercialize the product. These continuing contributions and unprecedented growth, focus, and opportunity in bioengineering will be a continuing frontier and opportunity for the United States and the world.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tsourkas, Philippos K., und Boris Rubinsky. „Laplace’s Equation, Genetic Algorithms, and Evolution“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32658.

Der volle Inhalt der Quelle
Annotation:
With the advent of problems in genetics that are either too difficult or too dangerous to solve experimentally, it is important to have mathematical tools available so that these problems may be solved through modeling and computation. To this end we developed a mathematical experimentation procedure to simulate the evolution of a population of individuals. The procedure employs genetic algorithm methodology to study a ‘species’ that is comprised of solutions to the Laplace equation. The algorithm is applied to the study of a particularly significant and controversial problem: The release of genetically engineered organism in the wild.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Turner, Charles H., und Alexander G. Robling. „Genetic Effects on Skeletal Mechanosensitivity in Mice“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32596.

Der volle Inhalt der Quelle
Annotation:
The accumulation of bone mass during growth can be enhanced by environmental factors such as mechanical loading (exercise) or calcium intake, but 60–70% of the variance in adult bone mineral density (BMD) is explained by heredity. Consequently, understanding the signaling pathways targeted by the genes governing bone accumulation holds perhaps the greatest potential in reducing fracture incidence later in life. Rodent models are particularly useful for studying the genetics of skeletal traits. Of the available inbred mouse strains, three in particular have been studied extensively in skeletal genetics: C57BL/6, DBA/2, and C3H/He. The C57BL/6 strain is characterized by low BMD and large total cross-sectional area (CSA) in the midshaft femur; the C3H/He strain exhibits very high femoral BMD and a smaller femoral CSA than the C57BL/6 mice; and DBA/2 mice have moderately high femoral BMD and a very small midshaft femur CSA. Mechanical loading of the skeleton during growth can substantially enhance periosteal bone apposition, and ultimately produce a diaphyseal cross section with enlarged area. Therefore we hypothesized that the mouse strain with greater femoral cross-sectional area (C57BL/6) might have a genetic predisposition for greater mechanosensitivity than mice with smaller cross sections (C3H/He and DBA/2).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mitchell, L. A., und J. D. Boeke. „Genetics from scratch: designing and building synthetic eukaryotic chromosomes“. In IET/SynbiCITE Engineering Biology Conference. Institution of Engineering and Technology, 2016. http://dx.doi.org/10.1049/cp.2016.1223.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sebaa, K., N. Henini, A. Tlemcani und H. Nouri. „Restructuration of distribution power system using Genetics Algorithms“. In 2015 50th International Universities Power Engineering Conference (UPEC). IEEE, 2015. http://dx.doi.org/10.1109/upec.2015.7339834.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Marciniak, Malgorzata, und Rahul Chowdhury. „Optimal geometry of solar cells with genetics algorithm“. In Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VIII, herausgegeben von Alexandre Freundlich, Masakazu Sugiyama und Laurent Lombez. SPIE, 2019. http://dx.doi.org/10.1117/12.2510943.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Genetics engineering"

1

Gur, Ilan. Biologically Diverse Genetic Engineering Platform. Office of Scientific and Technical Information (OSTI), März 2020. http://dx.doi.org/10.2172/1607790.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Allen, J., und T. Slezak. Genetic Engineering Workshop Report, 2010. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/1016982.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Weil, Clifford F., Anne B. Britt und Avraham Levy. Nonhomologous DNA End-Joining in Plants: Genes and Mechanisms. United States Department of Agriculture, Juli 2001. http://dx.doi.org/10.32747/2001.7585194.bard.

Der volle Inhalt der Quelle
Annotation:
Repair of DNA breaks is an essential function in plant cells as well as a crucial step in addition of modified DNA to plant cells. In addition, our inability to introduce modified DNA to its appropriate locus in the plant genome remains an important hurdle in genetically engineering crop species.We have taken a combined forward and reverse genetics approach to examining DNA double strand break repair in plants, focusing primarily on nonhomologous DNA end-joining. The forward approach utilizes a gamma-plantlet assay (miniature plants that are metabolically active but do not undergo cell division, due to cell cycle arrest) and has resulted in identification of five Arabidopsis mutants, including a new one defective in the homolog of the yeast RAD10 gene. The reverse genetics approach has identified knockouts of the Arabidopsis homologs for Ku80, DNA ligase 4 and Rad54 (one gene in what proves to be a gene family involved in DNA repair as well as chromatin remodeling and gene silencing)). All these mutants have phenotypic defects in DNA repair but are otherwise healthy and fertile. Additional PCR based screens are in progress to find knockouts of Ku70, Rad50, and Mre11, among others. Two DNA end-joining assays have been developed to further our screens and our ability to test candidate genes. One of these involves recovering linearized plasmids that have been added to and then rejoined in plant cells; plasmids are either recovered directly or transformed into E. coli and recovered. The products recovered from various mutant lines are then compared. The other assay involves using plant transposon excision to create DNA breaks in yeast cells and then uses the yeast cell as a system to examine those genes involved in the repair and to screen plant genes that might be involved as well. This award supported three graduate students, one in Israel and two in the U.S., as well as a technician in the U.S., and is ultimately expected to result directly in five publications and one Masters thesis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Perl, Avichai, Bruce I. Reisch und Ofra Lotan. Transgenic Endochitinase Producing Grapevine for the Improvement of Resistance to Powdery Mildew (Uncinula necator). United States Department of Agriculture, Januar 1994. http://dx.doi.org/10.32747/1994.7568766.bard.

Der volle Inhalt der Quelle
Annotation:
The original objectives are listed below: 1. Design vectors for constitutive expression of endochitinase from Trichoderma harzianum strain P1. Design vectors with signal peptides to target gene expression. 2. Extend transformation/regeneration technology to other cultivars of importance in the U.S. and Israel. 3. Transform cultivars with the endochitinase constructs developed as part of objective 1. A. Characterize foliar powdery mildew resistance in transgenic plants. Background of the topic Conventional breeding of grapevines is a slow and imprecise process. The long generation cycle, large space requirements and poor understanding of grapevine genetics prevent rapid progress. There remains great need to improve existing important cultivars without the loss of identity that follows from hybridization. Powdery mildew (Uncinula necator) is the most important fungal pathogen of grapevines, causing economic losses around the world. Genetic control of powdery mildew would reduce the requirement for chemical or cultural control of the disease. Yet, since the trait is under polygenic control, it is difficult to manipulate through hybridization and breeding. Also, because grapevines are heterozygous and vegetatively propagated cultivar identity is lost in the breeding process. Therefore, there is great need for techniques to produce transgenic versions of established cultivars with heterologous genes conferring disease resistance. Such a gene is now available for control of powdery mildew of grapevines. The protein coded by the Endochitinase gene, derived from Trichoderma harzianum, is very effective in suppressing U. necator growth. The goal of this proposal is to develop transgenic grapevines with this antifungal gene, and to test the effect of this gene on resistance to powdery mildew. Conclusions, achievements and implications Gene transfer technology for grape was developed using commercial cultivars for both wine and table grapes. It paved the way for a new tool in grapevine genetic studies enabling the alteration of specific important traits while maintaining the essential features of existing elite cultivars. Regeneration and transformation technologies were developed and are currently at an advanced stage for USA wine and Israeli seedless cultivars, representing the cutting edge of grape genetic engineering studies worldwide. Transgenic plants produced are tested for powdery mildew resistance in greenhouse and field experiments at both locations. It is our ultimate goal to develop transgenic grapes which will be more efficient and economical for growers to produce, while also providing consumers with familiar products grown with reduced chemical inputs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ho, N. W. Y. Genetic engineering of sulfur-degrading Sulfolobus. Office of Scientific and Technical Information (OSTI), Januar 1991. http://dx.doi.org/10.2172/6253123.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ho, N. Genetic engineering of sulfur-degrading Sulfolobus. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/5922005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ruffing, Anne, Christine Alexandra Trahan und Howland D. T. Jones. Genetic engineering of cyanobacteria as biodiesel feedstock. Office of Scientific and Technical Information (OSTI), Januar 2013. http://dx.doi.org/10.2172/1088046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Walsh, Nahid S. Genetic Engineering of Single-Domain Magnetic Bacteria. Fort Belvoir, VA: Defense Technical Information Center, September 1992. http://dx.doi.org/10.21236/ada256186.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tombs, Michael P. Biotechnology and Genetic Engineering Reviews. Volume 10. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1992. http://dx.doi.org/10.21236/ada266433.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Klopfenstein, N. B., Y. W. Chun, M. S. Kim, M. A. Ahuja, M. C. Dillon, R. C. Carman und L. G. Eskew. Micropropagation, genetic engineering, and molecular biology of Populus. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 1997. http://dx.doi.org/10.2737/rm-gtr-297.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie