Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Genetics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Genetics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Genetics"
Morin-Chassé, Alexandre. „Behavioral Genetics, Population Genetics, and Genetic Essentialism“. Science & Education 29, Nr. 6 (04.11.2020): 1595–619. http://dx.doi.org/10.1007/s11191-020-00166-y.
Der volle Inhalt der QuelleSumida, Brian. „Genetics for genetic algorithms“. ACM SIGBIO Newsletter 12, Nr. 2 (Juni 1992): 44–46. http://dx.doi.org/10.1145/130686.130694.
Der volle Inhalt der QuelleNiendorf, Kristin Baker. „Genetic Library: Cancer Genetics“. Journal of Genetic Counseling 11, Nr. 5 (Oktober 2002): 429–34. http://dx.doi.org/10.1023/a:1016854001384.
Der volle Inhalt der QuelleComfort, Nathaniel. „Genetics: The genetic watchmaker“. Nature 502, Nr. 7472 (Oktober 2013): 436–37. http://dx.doi.org/10.1038/502436a.
Der volle Inhalt der QuelleHendrix, Jon R. „Genetics: Cancer, a Genetic Disease Genetics: Jumping Genes Genetics: Beyond the Double Helix“. American Biology Teacher 51, Nr. 6 (September 1989): 376–77. http://dx.doi.org/10.2307/4448957.
Der volle Inhalt der QuelleGrochová, Ilga, und Ladislav Groch. „Genetics in cardiology. Part I. The history and evolution of modern genetics“. Cor et Vasa 49, Nr. 5 (01.05.2007): 196–201. http://dx.doi.org/10.33678/cor.2007.070.
Der volle Inhalt der QuelleGrochová, Ilga, Ladislav Groch und Diana Grochová. „Genetics in cardiology. Part II. Basic notions in genetics, methods of examination, types of heredity, chromosomal aberrations, genetics of congenital heart disease“. Cor et Vasa 49, Nr. 6 (01.06.2007): 229–36. http://dx.doi.org/10.33678/cor.2007.082.
Der volle Inhalt der QuelleClarke, Angus. „Genetic imprinting in clinical genetics“. Development 108, Supplement (01.04.1990): 131–39. http://dx.doi.org/10.1242/dev.108.supplement.131.
Der volle Inhalt der QuelleShanmugam, Ramalingam. „Biostatistical genetics and genetic epidemiology“. Journal of Statistical Computation and Simulation 73, Nr. 7 (Juli 2003): 543–44. http://dx.doi.org/10.1080/0094965021000044411.
Der volle Inhalt der QuelleSiegel, PB, und EA Dunnington. „Genetic selection strategies–population genetics“. Poultry Science 76, Nr. 8 (August 1997): 1062–65. http://dx.doi.org/10.1093/ps/76.8.1062.
Der volle Inhalt der QuelleDissertationen zum Thema "Genetics"
Hedmark, Eva. „Conservation Genetics of Scandinavian Wolverines“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6636.
Der volle Inhalt der QuelleDe, Bustos Cecilia. „Genetic and Epigenetic Variation in the Human Genome : Analysis of Phenotypically Normal Individuals and Patients Affected with Brain Tumors“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6629.
Der volle Inhalt der QuelleFourie, Mariesa. „Molecular characterization and further shortening of recombinant forms of the Lr19 translocation“. Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/189.
Der volle Inhalt der QuelleAssefaw-Redda, Yohannes. „Hemolin expression during Cecropia development and its effect on malaria parasites“. Doctoral thesis, Stockholm : Institutionen för genetik, mikrobiologi och toxikologi, Stockholms universitet, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-482.
Der volle Inhalt der QuelleSjödin, Per. „Effects of Selection and Demography on DNA Polymorphism in Black Mustard (Brassica nigra)“. Doctoral thesis, Uppsala universitet, Evolutionär funktionsgenomik, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6633.
Der volle Inhalt der QuelleZenger, Kyall Richard. „Genetic linkage maps and population genetics of macropods“. Phd thesis, Australia : Macquarie University, 2002. http://hdl.handle.net/1959.14/47604.
Der volle Inhalt der QuelleThesis (PhD)--Macquarie University, Division of Environmental and Life Sciences, Department of Biological Sciences, 2002.
Bibliography: leaves 136-157.
General introduction -- Molecular markers for comparative and quantitative studies in macropods -- Genetic linkage map construction in the tammar wallaby (M. eugenii) -- Intraspecific variation, sex-biased dispersal and phylogeography of the eastern grey kangaroo (M. giganteus) -- General discussion.
The analysis of DNA using molecular techniques is an important tool for studies of evolutionary relationships, population genetics and genome organisation. The use of molecular markers within marsupials is primarily limited by their availability and success of amplification. Within this study, 77 macropodid type II microsatellite loci and two type I genetic markers were characterised within M. eugenii to evaluate polymorphic levels and cross-species amplification artifacts. Results indicated that 65 microsatellite loci amplified a single locus in M. eugenii with 44 exhibiting high levels of variability. The success of crossspecies amplification of microsatellite loci was inversely proportional to the evolutionary distance between the macropod species. It is revealed that the majority of species within the Macropodidae are capable of using many of the available heterologous microsatellites. When comparing the degree of variability between source-species and M. eugenii, most were significantly higher within source species (P < 0.05). These differences were most likely caused by ascertainment bias in microsatellite selection for both length and purity. -- The production of a marsupial genetic linkage map is perhaps one of the most important objectives in marsupial research. This study used a total of 353 informative meioses and 64 genetic markers to construct a framework genetic linkage map for M. eugenii. Nearly all markers (93.7%) formed a significant linkage (LOD > 3.0) with at least one other marker. More than 70% (828 cM) of the genome had been mapped when compared with chiasmata data. Nine linkage groups were identified, with all but one (LG7; X-linked) allocated to the autosomes. Theses groups ranged in size from 15.7 cM to 176.5 cM, and have an average distance of 16.2 cM between adjacent markers. Of the autosomal linkage groups, LG2 and LG3 were assigned to chromosome 1 and LG4 localised to chromosome 3 based on physical localisation of genes. Significant sex-specific distortions towards reduced female recombination rates were revealed in 22% of comparisons. Positive interference was observed within all the linkage groups analysed. When comparing the X-chromosome data to closely related species it is apparent that it is conserved both in synteny and gene order. -- The investigation of population dynamics of eastern grey kangaroos has been limited to a few ecological studies. The present investigation provides analysis of mtDNA and microsatellite data to infer both historical and contemporary patterns of population structuring and dispersal. The average level of genetic variation across sample locations was exceedingly high (h = 0.95, HE = 0.82), and is one of the highest observed for marsupials. Contrary to ecological studies, both genic and genotypic analyses reveal weak genetic structure of populations where high levels of dispersal may be inferred up to 230 km. The movement of individuals was predominantly male-biased (average N,m = 22.61, average N p = 2.73). However, neither sex showed significant isolation by distance. On a continental scale, there was strong genetic differentiation and phylogeographic distinction between southern (TAS, VIC and NSW) and northern (QLD) Australian populations, indicating a current and / or historical restriction of geneflow. In addition, it is evident that northern populations are historically more recent, and were derived from a small number of southern eastern grey kangaroo founders. Phylogenetic comparisons between M. g. giganteus and M. g. tasmaniensis, indicated that the current taxonomic status of these subspecies should be revised as there was a lack of genetic differentiation between the populations sampled.
Mode of access: World Wide Web.
xv, 182 leaves ill
Souleman, Dima. „Genetic consequences of colonization of a metal-polluted environment, population genetics and quantitative genetics approaches“. Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10006/document.
Der volle Inhalt der QuelleNatural habitats are more and more destructed and fragmented by urban expansion and human activities. The fragmentation of natural and agricultural areas by buildings and new infrastructures affects the size, connectivity and the quality of habitats. The populations of organisms inhabiting these anthropized territories are then more isolated. However, differentiation between populations of the same organism depends on demographic and genetic processes such as genetic drift, gene flow, mutation and natural selection. Only species that have developed special tolerance mechanisms can persist under changed environmental conditions. The introduction of contaminants such as metals in the environment may influence plants and animals evolution by modifying the evolutionary forces and thus generating differences between populations. In this work, attention was focused on the genetic consequences of metallic pollution on two species, the earthworm Lumbricus terrestris and the plant model Arabidopsis halleri. Two different approaches have been used to study the genetic response to metallic contamination: a population genetic approach was performed in L. terrestris and a quantitative genetic approach was carried on in A. halleri. First, it was a question of identifying and validating new microsatellite markers in L. terrestris. These markers were then used to characterize the neutral genetic diversity in worms collected from agricultural and urban sites. Secondly, genetic architecture of Zn tolerance and Zn hyperaccumulation was conducted investigated for the first time using an intraspecific crossing between metallicolous and non-metallicolous individuals of A. halleri. High density of SNP markers was used to proceed to the QTL mapping step
Ennis, Don Gregory. „Genetics of SOS mutagenesis“. Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184602.
Der volle Inhalt der QuelleValvo, Giuseppe. „Applications of landscape genetics for wildlife conservation and management“. Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3421998.
Der volle Inhalt der QuelleNell’ultimo decennio, l’uso di marcatori molecolari in grado di rilevare polimorfismi a livello del DNA ha acquisito sempre maggiore importanza nella genetica e nello studio delle popolazioni animali. I microsatelliti sono i più diffusamente impiegati, per la loro facilità d’impiego e il loro elevato polimorfismo, che li rende altamente informativi. I marcatori sono strumenti interessanti ed utili per evidenziare la variabilità genetica di specie, razze e popolazioni, per indagare la struttura delle popolazioni, per determinare distanze genetiche fra razze e individui e anche per la definizione di metodi di tracciabilità genetica al fine di identificare l’origine di prodotti animali destinati all’uomo, questione di particolare importanza data l’esigenza oramai diffusa di sicurezza da parte del consumatore. Essi sono decisivi per la costruzione di mappe genetiche e fisiche e sono sempre più studiati e impiegati a sostegno dei piani di selezione e conservazione. Consentono inoltre l’applicazione di test di paternità e maternità, e possono quindi contribuire al controllo delle informazioni genealogiche. L’obiettivo generale di questo lavoro è stato l’applicazione dell’analisi con microsatelliti ad una popolazione naturale di capriolo distribuita sul territorio delle province di Trento e Belluno, con l’individuazione di nuclei di sottopopolazioni da poter, eventualmente, utilizzare a fini gestionali. Infine, è stata condotta un’indagine sull’interazione fra le caratteristiche del paesaggio e la struttura genetica delle (sotto)popolazioni di capriolo identificate. Il primo contributo sperimentale comprende la messa a punto di un panel di 25 marcatori molecolari microsatellite per il capriolo (Capreolus capreolus) e la sua applicazione per l’identificazione della struttura genetica della popolazione di capriolo nelle province di Trento e Belluno, nelle Alpi orientali. La popolazione di capriolo è stata caratterizzata geneticamente per stabilire il livello di diversità genetica e per ricercare evidenze di un’eventuale strutturazione interna. Sono stati analizzati 657 campioni provenienti da capi abbattuti nelle province di Trento e Belluno nel corso delle stagioni venatorie 2003-2004 (per i campioni di Belluno) 2007-2008 e 2008-2009 (per i campioni di Trento). La caratterizzazione genetica effettuata sul campione analizzato ha dimostrato un forte deficit di eterozigosi. Sono stati applicati diversi approcci statistici per l’identificazione di eventuali sottopopolazioni e per l’identificazione di ipotetiche barriere. L’applicazione di un approccio statistico di tipo Bayesiano, utilizzando i software STRUCTURE e GENELAND, ha consentito di rilevare la presenza di sette sottopopolazioni, spazialmente separate, nell’intera area di studio. L’identificazione di ipotetiche barriere è stata effettuata tramite l’analisi delle componenti principali (PCA), utilizzando il software SURFER. Il secondo contributo sperimentale rappresenta un’applicazione della disciplina denominata “landscape genetics”, che consiste nello studio dell’interazione fra le caratteristiche del paesaggio e processi microevolutivi quali il flusso genico, la deriva genetica e la selezione. L’associazione fra struttura genetica e conformazione del territorio è stata quindi ulteriormente approfondita nel tentativo di identificare le variabili che hanno un ruolo maggiore nell’influenzare il flusso genico. Sono state calcolate tra ogni coppia di individui due tipi di distanze geografiche: la distanza euclidea (la lunghezza della linea retta che unisce un individuo ad un altro) e la distanza di minimo costo (la traiettoria che massimizza l'utilizzo dei corridoi di bosco per spostarsi da un luogo ad un altro). Sono state, successivamente, calcolate entro ciascuna popolazione le correlazioni fra le matrici di distanza genetica ottenute con GENEPOP e le corrispondenti matrici di distanze geografiche utilizzando due approcci statistici, il Mantel test e il Partial Mantel test. Queste correlazioni sono state verificate andando a considerare vari modelli del paesaggio, che hanno preso in considerazione diversi parametri quali la presenza di bosco, la presenza di insediamenti urbani, ecc. I risultati hanno dimostrato che tutte queste variabili incidono sulla connettività della popolazione. E’ stato messo in rilievo, inoltre, un differente impatto della struttura del territorio sui due sessi. Purtroppo, l'esiguo numero totale di femmine disponibili per ogni sotto-popolazione ha impedito un'adeguata analisi di questi sotto-campioni e il suo confronto con gli altri.. In conclusione, i risultati di questo lavoro hanno messo in luce, entro un’area geograficamente abbastanza limitata, l’esistenza di 7 sottopopolazioni di capriolo spazialmente separate che possono essere la base per la definizione di unità di gestione su base ecologica e non amministrativa. Inoltre, hanno fornito indicazioni a scala di paesaggio sulle relazioni fra la specie e l’uso e la morfologia del suolo. Da un punto di vista generale, inoltre, possiamo concludere che questo approccio è sicuramente molto promettente sia per studiare la struttura genetica e spaziale, e quindi evolutiva, delle popolazioni di animali selvatici, sia per affrontare con un criterio innovativo le relazioni fauna-ambiente. Il campionamento, se si tratta di specie cacciabili, è semplice e con costi modesti si possono ottenere numerosità consistenti. La possibilità di georeferenziare la localizzazione del singolo campione e di descrivere l’ambiente con strumenti di tipo GIS permette poi di collegare le informazioni genetiche a quelle ambientali e spaziali. Con l’ormai consolidata disponibilità di software GIS e basi cartografiche approfondite, e con la prevedibile diminuzione dei costi e l’affinamento delle indagini sui marcatori genetici molecolari, le applicazioni di landscape genetics potranno certamente estendersi e fornire indicazioni sulla storia recente, sugli scambi genetici e sulla dipendenza dai fattori ambientali delle popolazioni selvatiche.
Lemons, Jennifer M. „“I didn’t know it existed until you called”: Protestant clergy experience and education of genetics“. University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307125947.
Der volle Inhalt der QuelleBücher zum Thema "Genetics"
Snustad, D. Peter. Principles of genetics. 2. Aufl. New York: John Wiley, 2002.
Den vollen Inhalt der Quelle findenWexler, Barbara. Genetics and genetic engineering. 2. Aufl. Detroit, MI: Thomson/Gale Group, 2006.
Den vollen Inhalt der Quelle findenYount, Lisa. Genetics and genetic engineering. New York: Facts on File, 1997.
Den vollen Inhalt der Quelle findenJ, Simmons Michael, Hrsg. Principles of genetics. 2. Aufl. New York: John Wiley, 2000.
Den vollen Inhalt der Quelle findenJ, Simmons Michael, Hrsg. Principles of genetics. 3. Aufl. New York, NY: John Wiley & Sons, 2003.
Den vollen Inhalt der Quelle findenJ, Simmons Michael, Hrsg. Principles of genetics. 4. Aufl. Hoboken, NJ: John Wiley & Sons, 2006.
Den vollen Inhalt der Quelle findenJ, Simmons Michael, Hrsg. Principles of genetics. 5. Aufl. Hoboken: Wiley, 2009.
Den vollen Inhalt der Quelle findenJ, Simmons Michael, und Jenkins John B, Hrsg. Principles of genetics. New York: John Wiley, 1997.
Den vollen Inhalt der Quelle findenW, Burns George. The science of genetics. 6. Aufl. New York: Macmillan, 1989.
Den vollen Inhalt der Quelle findenL, Hartl Daniel, Hrsg. Genetics. 3. Aufl. Boston: Jones and Bartlett, 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Genetics"
Vogel, Friedrich, und Arno G. Motulsky. „Population Genetics: Consanguinity, Genetic Drift“. In Human Genetics, 549–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03356-2_14.
Der volle Inhalt der QuelleRege, J. E. O., Joel Ochieng und Olivier Hanotte. „Livestock genetics and breeding.“ In The impact of the International Livestock Research Institute, 59–102. Wallingford: CABI, 2020. http://dx.doi.org/10.1079/9781789241853.0059.
Der volle Inhalt der QuelleForoud, Tatiana, und Daniel L. Koller. „Genetic Inheritance and Population Genetics“. In Molecular Genetic Pathology, 393–403. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-405-6_14.
Der volle Inhalt der QuelleTwfieg, Mohammed-Elfatih, und M. Dawn Teare. „Molecular Genetics and Genetic Variation“. In Methods in Molecular Biology, 3–12. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60327-416-6_1.
Der volle Inhalt der QuelleForoud, Tatiana, und Daniel L. Koller. „Genetic Inheritance and Population Genetics“. In Molecular Genetic Pathology, 111–27. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4800-6_5.
Der volle Inhalt der QuelleHagemann, Rudolf, Monika M. Hagemann und Ralph Block. „Genetic Extranuclear Inheritance: Plastid Genetics“. In Progress in Botany, 108–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80446-5_4.
Der volle Inhalt der QuelleVerster, Joris C., Thomas M. Tzschentke, Kieran O’Malley, Francis C. Colpaert, Bart Ellenbroek, Bart Ellenbroek, R. Hamish McAllister-Williams et al. „Forward Genetics/Reverse Genetics“. In Encyclopedia of Psychopharmacology, 544. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_635.
Der volle Inhalt der QuelleKaper, James B., und Mary M. Baldini. „Genetics“. In Cholera, 69–94. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4757-9688-9_4.
Der volle Inhalt der QuelleWapner, Ronald. „Genetics“. In Stillbirth: Prediction, Prevention and Management, 100–109. Oxford, UK: Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9781444398038.ch6.
Der volle Inhalt der QuelleMeguro, Akira, und Nobuhisa Mizuki. „Genetics“. In Behçet's Disease, 41–54. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54487-6_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Genetics"
Kender, John R., Matthew L. Hill, Apostol (Paul) Natsev, John R. Smith und Lexing Xie. „Video genetics“. In the international conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1873951.1874198.
Der volle Inhalt der QuelleFirdaus, Nikita Syahrussiami, und Elza Ibrahim Auerkari. „Genetics of Cherubism“. In 11th International Dentistry Scientific Meeting (IDSM 2017). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/idsm-17.2018.25.
Der volle Inhalt der QuelleCueto, Melissa, und Valerie Puig. „Genetics of Hypertension“. In MOL2NET 2017, International Conference on Multidisciplinary Sciences, 3rd edition. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/mol2net-03-05119.
Der volle Inhalt der QuelleLindpaintner, Klaus. „Genetics and genemoics“. In the fifth annual international conference. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/369133.369216.
Der volle Inhalt der QuelleGarcia Moyano, M., L. Ceberio Hualde, B. González Quero, I. González Muñoz, F. J. Martínez Núñez, M. Lázaro Serrano, A. Gandiaga Mandiola und B. Gener Querol. „Lymphangioleiomyomatosis and Genetics“. In ERS International Congress 2022 abstracts. European Respiratory Society, 2022. http://dx.doi.org/10.1183/13993003.congress-2022.129.
Der volle Inhalt der QuelleEpiskoposian, L. „Genetics and Ethnogenesis“. In Caucaso-Caspica. Ереван: Российско-Армянский (Славянский) университет, 2022. http://dx.doi.org/10.48200/9789939672977_145.
Der volle Inhalt der QuelleJavorszky, Karl. „Accounting in Genetics“. In The 4th International Conference on the Foundations of Information Science. Basel, Switzerland: MDPI, 2010. http://dx.doi.org/10.3390/fis2010-00284.
Der volle Inhalt der QuelleKurtović-Kozarić, Amina. „GENETICS OF CARDIOMYOPATHY“. In International Scientific Symposium “Diagnostics in Cardiology and Grown-Up Congenital Heart Disease (GUCH)”. Academy of Sciences and Arts of Bosnia and Herzegovina, 2021. http://dx.doi.org/10.5644/pi2021.199.01.
Der volle Inhalt der QuelleChapman, Colin D., Kazuhiro Saitou und Mark J. Jakiela. „Genetic Algorithms As an Approach to Configuration and Topology Design“. In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0338.
Der volle Inhalt der QuelleTurner, Charles H. „How Microimaging Technology Is Transforming the Field of Skeletal Genetics“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33057.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Genetics"
Serenius, T., und Kenneth J. Stalder. Genetics of Sow Longevity. Ames (Iowa): Iowa State University, Januar 2005. http://dx.doi.org/10.31274/ans_air-180814-1076.
Der volle Inhalt der QuelleRothenberg, Marc. Genetics of Eosinophilic Esophagitis. Fort Belvoir, VA: Defense Technical Information Center, März 2012. http://dx.doi.org/10.21236/ada567625.
Der volle Inhalt der QuelleRothenberg, Marc E. Genetics of Eosinophilic Esophagitis. Fort Belvoir, VA: Defense Technical Information Center, März 2011. http://dx.doi.org/10.21236/ada567626.
Der volle Inhalt der QuelleDilworth, G. L. Biochemical genetics of Lignin degradation. Office of Scientific and Technical Information (OSTI), Februar 1997. http://dx.doi.org/10.2172/471447.
Der volle Inhalt der QuelleBult, Carol J. Systems Genetics of Chronic Pain. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada566859.
Der volle Inhalt der QuelleChiang, Katherine. Plant Genetics / Corn - Cornell University. Purdue University Libraries, März 2012. http://dx.doi.org/10.5703/1288284315010.
Der volle Inhalt der QuelleBult, Carol J. Systems Genetics of Chronic Pain. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada592872.
Der volle Inhalt der QuelleCone, Karen. The 50th Annual Maize Genetics Conference. Office of Scientific and Technical Information (OSTI), März 2014. http://dx.doi.org/10.2172/1124646.
Der volle Inhalt der QuelleRobert J. Robbins. ELECTRONIC SCHOLARLY PUBLISHING: FOUNDATIONS OF GENETICS. Office of Scientific and Technical Information (OSTI), November 2002. http://dx.doi.org/10.2172/804568.
Der volle Inhalt der QuelleLidstrom, Mary E. Genetics in Marine Methane-Oxidizing Bacteria. Fort Belvoir, VA: Defense Technical Information Center, Februar 1989. http://dx.doi.org/10.21236/ada203790.
Der volle Inhalt der Quelle