Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Genetic vectors“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Genetic vectors" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Genetic vectors"
Gooding, R. H. „Genetic variation in arthropod vectors of disease-causing organisms: obstacles and opportunities.“ Clinical Microbiology Reviews 9, Nr. 3 (Juli 1996): 301–20. http://dx.doi.org/10.1128/cmr.9.3.301.
Der volle Inhalt der QuelleYew, Chee-Hong Takahiro, Narmatha Gurumoorthy, Fazlina Nordin, Gee Jun Tye, Wan Safwani Wan Kamarul Zaman, Jun Jie Tan und Min Hwei Ng. „Integrase deficient lentiviral vector: prospects for safe clinical applications“. PeerJ 10 (12.08.2022): e13704. http://dx.doi.org/10.7717/peerj.13704.
Der volle Inhalt der QuelleVerma, Abhishek, und Ankit Awasthi. „Developing non-viral or viral vectors for efficient and targeted delivery of genetic material, such as DNA or RNA, for gene therapy applications“. Pharmaspire 15, Nr. 04 (2023): 243–56. http://dx.doi.org/10.56933/pharmaspire.2023.15137.
Der volle Inhalt der QuellePerumalsamy, Nandhini, Rohit Sharma, Muthukumaravel Subramanian und Shriram Ananganallur Nagarajan. „Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India“. Pathogens 13, Nr. 7 (02.07.2024): 556. http://dx.doi.org/10.3390/pathogens13070556.
Der volle Inhalt der QuelleWeklak, Denice, Daniel Pembaur, Georgia Koukou, Franziska Jönsson, Claudia Hagedorn und Florian Kreppel. „Genetic and Chemical Capsid Modifications of Adenovirus Vectors to Modulate Vector–Host Interactions“. Viruses 13, Nr. 7 (02.07.2021): 1300. http://dx.doi.org/10.3390/v13071300.
Der volle Inhalt der QuellePowell, Jeffrey. „Genetic Variation in Insect Vectors: Death of Typology?“ Insects 9, Nr. 4 (11.10.2018): 139. http://dx.doi.org/10.3390/insects9040139.
Der volle Inhalt der QuelleKienesberger, Sabine, Gregor Gorkiewicz, Martina M. Joainig, Sylvia R. Scheicher, Eva Leitner und Ellen L. Zechner. „Development of Experimental Genetic Tools for Campylobacter fetus“. Applied and Environmental Microbiology 73, Nr. 14 (18.05.2007): 4619–30. http://dx.doi.org/10.1128/aem.02407-06.
Der volle Inhalt der QuelleCriscione, Frank, David A. O’Brochta und William Reid. „Genetic technologies for disease vectors“. Current Opinion in Insect Science 10 (August 2015): 90–97. http://dx.doi.org/10.1016/j.cois.2015.04.012.
Der volle Inhalt der QuelleKrasnykh, Victor N., Joanne T. Douglas und Victor W. van Beusechem. „Genetic Targeting of Adenoviral Vectors“. Molecular Therapy 1, Nr. 5 (Mai 2000): 391–405. http://dx.doi.org/10.1006/mthe.2000.0062.
Der volle Inhalt der QuelleKojic, Milorad, und William K. Holloman. „Shuttle vectors for genetic manipulations in Ustilago maydis“. Canadian Journal of Microbiology 46, Nr. 4 (01.04.2000): 333–38. http://dx.doi.org/10.1139/w00-002.
Der volle Inhalt der QuelleDissertationen zum Thema "Genetic vectors"
Theodorides, Kosmas. „Genetic and systematic studies on Cicadellidae vectors“. Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368187.
Der volle Inhalt der QuelleShareck, Julie. „Isolation and characterization of a cryptic plasmid from Lactobacillus plantarum“. Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=84072.
Der volle Inhalt der QuelleRobson, Julia. „The construction of an expression vector for the transformation of the grape chloroplast genome“. Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53621.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The genetic information of plants is found in the nucleus, the mitochondria, and the plastids. The DNA of plastids is comprised of multiple copies of a double-stranded, circular, prokaryoticallyderived genome of -150 kb. The genome equivalents of plastid organelles in higher plant cells are an attractive target for genetic engineering as high protein expression levels are readily obtained due to the high genome copy number per organelle. The resultant proteins are contained within the plastid organelle and the corresponding transgenes are inherited, in most crop plants, uniparentally, preventing pollen transmission of DNA. Plastid transformation involves the uniform modification of all the plastid genome copies, a process facilitated by homologous recombination and the non-Mendelian segregation of plastids upon cell division. The plastid genomes are in a continuous state of inter- and intra-molecular exchange due to their common genetic complement. This enables the site-specific integration of any piece of DNA flanked by plastid targeting sequences, via homologous recombination. The attainment of homoplasmy, where all genomes are transformed, requires the inclusion of a plastid-specific selectable marker. Selective pressure favouring the propagation of the transformed genome copies, as well as the random segregation of plastids upon cell division, make it feasible to acquire uniformity and hence genetic stability. From this, a complete transplastomie line is obtained where all plastid genome copies present are transgenic, having eliminated all wild-type genome copies. The prokaryotic nature of the chloroplast genetic system enables expression of multiple proteins from polycistronic mRNAs, allowing the introduction of entire operons in a single transformation. Expression cassettes in vectors thus include single regulatory elements of plastid origin, and harbour genes encoding selectable and screenable markers, as well as one or more genes of interest. Each coding region is preceded by an appropriate translation control region to ensure efficient translation from the polycistronic mRNA. The function of a plastid transformation vector is to enable transfer and stable integration of foreign genes into the chloroplast genomes of higher plants. The expression vector constructed in this research is specific for the transformation of the grape chloroplast genome. Vitis vinifera L., from the family, Vitaceae, is the choice species for the production of wine and therefore our target for plastid transformation. All chloroplast derived regulatory elements and sequences included in the vector thus originated from this species.
AFRIKAANSE OPSOMMING: Die genetiese inligting van plante word gevind in die kern, die mitochondria, en die plastiede. Die DNA van plastiede bestaan uit veelvuldige kopieë van 'n ~ 150 kb dubbelstring, sirkulêre genoom van prokariotiese oorsprong. Die genoomekwivalente van plastiede in hoër plante is 'n aantreklike teiken vir genetiese manipulering, aangesien die hoë genoom kopiegetal per organel dit moontlik maak om gereeld hoë vlakke van proteïenuitdrukking te verkry. Hierdie proteïene word tot die plastied beperk, en die ooreenstemmende transgene word in die meeste plante sitoplasmies oorgeërf, sonder die oordrag van DNA deur die stuifmeel. Plastied transformasie behels die uniforme modifikasie van al die plastied genoomkopieë, 'n proses wat deur homoloë rekombinasie en die nie-Mendeliese segregasie van plastiede tydens seldeling gefasiliteer word. As gevolg van die gemeenskaplike genetiese komplement, vind aanhoudende interen intra-molekulêre uitruiling van plastiedgenome plaas. Dit maak die setel-spesifieke integrasie, via homoloë rekombinasie, van enige stuk DNA wat deur plastied teikenvolgordes begrens word, moontlik. Vir die verkrying van homoplasmie, waar alle genome getransformeer is, word die insluiting van 'n plastiedspesifieke selekteerbare merker benodig. Seleksiedruk wat die vermeerdering van die getransformeerde genoomkopieë bevoordeel, en die lukrake segregasie van plastiede tydens seldeling, maak dit moontlik om genetiese stabiliteit en uniformiteit van die genoom te verkry. Dit kan op sy beurt tot die verkryging van 'n volledige transplastomiese lyn lei, waar alle aanwesige plastiedgenome transgenies is, en wilde tipe genoomkopieë geëlimineer is. Die prokariotiese aard van die chloroplas genetiese sisteem maak die uitdrukking van veelvuldige proteïene vanaf polisistroniese mRNAs moontlik, wat die toevoeging van volledige operons in 'n enkele transformasie toelaat. Uitdrukkingskassette in vektore bevat dus enkel regulatoriese elemente van plastied oorsprong, gene wat kodeer vir selekteerbare en sifbare merkers, asook een of meer gene van belang (teikengene). Voor elke koderingsstreek, is daar ook 'n toepaslike translasie beheerstreek om doeltreffende translasie vanaf die polisistroniese mRNA te verseker. Die funksie van 'n plastied transformasie vektor is om die oordrag en stabiele integrasie van transgene in chloroplasgenome van hoër plante moontlik te maak. Die uitdrukkingsvektor wat in hierdie studie gekonstrueer is, is spesifiek vir die transformasie van die druif chloroplasgenoom. Vitis vinifera L., van die familie Vitaceae, is die voorkeur species vir die produksie van wyn, en daarom die teiken vir plastied transformasie. Alle chloroplast-afgeleide regulatoriese elemente en volgordes wat in hierdie vektor ingesluit is, het huloorsprong vanaf VUis vinifera L.
Ghosh, Arkasubhra. „Rational design of split gene vectors to expand the packaging capacity of adeno-associated viral vectors“. Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4712.
Der volle Inhalt der QuelleThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. "December 2007" Includes bibliographical references.
Wood, David Rowe Ding Jiahuan. „Design, optimization, and evaluation of conditionally active gene therapy vectors“. Waco, Tex. : Baylor University, 2008. http://hdl.handle.net/2104/5153.
Der volle Inhalt der QuelleMück-Häusl, Martin Andreas. „Genetic engineering of adenoviral vectors for improved therapeutic applications“. Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-138269.
Der volle Inhalt der QuelleWong, Tik-wun Lina. „Construction of an infectious PRRSV cDNA clone and its use as a vector for foreign gene expression“. Click to view the E-thesis via HKUTO, 2010. http://sunzi.lib.hku.hk/hkuto/record/B44251841.
Der volle Inhalt der QuelleVan, Eeden C. (Christiaan). „The construction of gene silencing transformation vectors for the introduction of multiple-virus resistance in grapevines“. Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/53764.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Viruses are some of the most important pathogens of grapevines. There are no effective chemical treatments, and no grapevine- or other natural resistance genes have been discovered against grapevine infecting viruses. The primary method of grapevine virus control is prevention by biological indexing and molecular- and serological screening of rootstocks and scions before propagation. Due to the spread of grapevine viruses through insect vectors, and in the case of GRSPaV the absence of serological screening, these methods of virus control are not always effective. In the past several methods, from cross-protection to pathogen derived resistance (PDR), have been applied to induce plant virus resistance, but with inconsistent results. In recent years the application of post-transcriptional gene silencing (PTGS), a naturally occurring plant defense mechanism, to induce targeted virus resistance has achieved great success. The Waterhouse research group has designed plant transformation vectors that facilitate specific virus resistance through PTGS. The primary focus of this study was the production of virus specific transformation vectors for the introduction of grapevine virus resistance. The Waterhouse system has been successfully utilised for the construction of three transformation vectors with the pHannibal vector as backbone. Each vector contains homologous virus coat protein (CP) gene segments, cloned in a complementary conformation upstream and downstream of an intron sequence. The primary vector (pHann-SAScon) contains complementary CP gene segments of both GRSPaV and GLRaV-3 and was designed for the introduction of multiple-virus resistance. For the construction of the primary vector the GRSPaV CP gene was isolated from RSP infected grapevines. A clone of the GLRaV-3 CP gene was acquired. The second vector (pHann- LR3CPsas) contains complementary CP gene segments of GLRaV-3. The third vector (pHann-LR2CPsas) contains complementary CP gene segments of GLRaV-2. The cassette containing the complementary CP gene segments of both GRSPaV and GLRaV-3 was cloned into pART27 (pART27-HSAScon), and used to transform N tabacum cv. Petit Havana (SRI), through A. tumefaciens mediated transformation. Unfortunately potential transformants failed to regenerate on rooting media; hence no molecular tests were performed to confirm transformation. Once successful transformants are generated, infection with a recombinant virus vector (consisting of PYX, the GFP gene as screenable marker and the complementary CP gene segments of both GRSPaV and GLRaV-3) will be used to test for the efficacy of the vectors to induce resistance. A secondary aim was added to this project when a need was identified within the South African viticulture industry for GRSPaV specific antibodies to be used in serological screening. To facilitate future serological detection of GRSPaV, the CP gene was isolated and expressed with a bacterial expression system (pETI4b) within the E. coli BL2I(DE3)pLysS cell line. The expressed protein will be used to generate GRSPaV CP specific antibodies.
AFRIKAANSE OPSOMMING: Virusse is van die belangrikste patogene by wingerd. Daar bestaan geen effektiewe chemiese beheer nie, en geen wingerd- of ander natuurlike weerstandsgene teen wingerdvirusse is al ontdek nie. Die primêre metode van beheer t.o.v. wingerdvirusse is voorkoming deur biologiese indeksering, en molekulêre- en serologiese toetsing van onderstokke en entlote voor verspreiding. As gevolg van die verspreiding van wingerdvirusse deur insekvektore, en in die geval van GRSPa V die tekort aan serologiese toetsing, is dié metodes van virusbeheer nie altyd effektief nie. In die verlede is metodes soos kruis-beskerming en patogeen-afgeleide weerstand (PDR) gebruik om virusweerstand te induseer, maar met inkonsekwente resultate. In onlangse jare is post-transkripsionele geenonderdrukking (PTGS), 'n natuurlike plantbeskermingsmeganisme, met groot sukses toegepas om geteikende virusweerstand te induseer. Die Waterhouse-navorsingsgroep het planttransformasievektore ontwerp wat spesifieke virusweerstand induseer d.m.v. PTGS. Die vervaardiging van virus spesifieke tranformasievektore vir die indusering van wingerdvirusweerstand was die primêre doelwit van hierdie studie. Die Waterhouse-sisteem was gebruik vir die konstruksie van drie transformasievektore, met die pHannibal vektor as basis. Elke vektor bevat homoloë virus kapsiedproteïen (CP) geensegmente, gekloneer in 'n komplementêre vorm stroom-op en stroom-af van 'n intronvolgorde. Die primêre vektor (pHann-SAScon) bevat komplementêre CP geensegmente van beide GRSPaV en GLRaV-3, en was ontwerp vir die indusering van veelvoudige-virusweerstand. Die CP-geen van GRSPa V was vanuit RSP-geïnfekteerde wingerd geïsoleer, vir die konstruksie van die primêre vektor. 'n Kloon van die GLRa V-3 CP-geen was verkry. Die tweede vektor (pHann-LR3CPsas) bevat komplementêre CP geensegmente van GLRaV-3. Die derde vektor (pHann-LR2CPsas) bevat komplementêre CP geensegmente van GLRa V-2. Die kasset bestaande uit die komplementêre CP geensegmente van beide GRSPaV en GLRaV-3, was gekloneer in pART27 (pART27-HSAScon), en gebruik om N tabacum cv. Petit Havana (SRI) te transformeer d.m.v. A. tumefaciens bemiddelde transformasie. Ongelukkig het potensiële transformante nie geregenereer op bewortelingsmedia nie; gevolglik was geen molekulêre toetse gedoen om transformasie te bevestig nie. Na suksesvolle transformante gegenereer is, sal infeksie met 'n rekombinante-virusvektor (bestaande uit PYX, die GFP geen as waarneembare merker en die komplementêre CP geensegmente van beide GRSPa V en GLRa V-3) gebruik word om die effektiwiteit van die vektore as weerstandsinduseerders te toets. 'n Sekondêre doelwit is by die projek gevoeg toe 'n behoefte aan GRSPaV spesifieke teenliggame binne die Suid-Afrikaanse wynbedryf geïdentifiseer is, vir gebruik in serologiese toetsing. Om toekomstige serologiese toetsing van GRSPa V te bemiddel, was die CP-geen geïsoleer en in 'n bakteriële uitdrukkingsisteem (PETI4b) uitgedruk, in die E. coli BL21(DE3)pLysS sellyn. Die uitgedrukte proteïne sal gebruik word vir die vervaardiging van GRSPa V CP spesifieke antiliggame.
Warren, Ann. „Transposable genetic elements in the mosquito Aedes aegypti“. Thesis, University of Liverpool, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.237672.
Der volle Inhalt der QuelleLimberis, Maria. „A lentiviral gene transfer vector for the treatment of cystic fibrosis airway disease“. Title page, synopsis and list of contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phl735.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Genetic vectors"
L, Hefferon Kathleen, Hrsg. Virus expression vectors. Tribandrum: Transworld Research Network, 2007.
Den vollen Inhalt der Quelle findenS, Ruiz Pablo, Hrsg. Genetic vectors research focus. New York: Nova Biomedical Books, 2007.
Den vollen Inhalt der Quelle findenDavid, Curiel, und Douglas Joanne T, Hrsg. Adenoviral vectors for gene therapy. Amsterdam: Academic Press, 2002.
Den vollen Inhalt der Quelle findenGeorge, Dickson, Hrsg. Molecular and cell biology of human gene therapeutics. London: Chapman & Hall, 1995.
Den vollen Inhalt der Quelle findenYakov, Gluzman, Hughes Stephen H und Cold Spring Harbor Laboratory, Hrsg. Viral vectors. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory, 1988.
Den vollen Inhalt der Quelle findenL, Rodriguez Raymond, und Denhardt David T, Hrsg. Vectors: A survey of molecular cloning vectors and their uses. Boston: Butterworths, 1988.
Den vollen Inhalt der Quelle findenD, Richardson Christopher, Hrsg. Baculovirus expression protocols. Totowa, N.J: Humana Press, 1995.
Den vollen Inhalt der Quelle findenH, Miller Jeffrey, und Calos Michele P, Hrsg. Gene transfer vectors for mammalian cells. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory, 1987.
Den vollen Inhalt der Quelle findenP, Jones, Hrsg. Vectors: Cloning applications. Chichester: Wiley, 1998.
Den vollen Inhalt der Quelle findenP, Jones, Hrsg. Vectors: Expression systems. Chichester: John Wiley & Sons, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Genetic vectors"
Benabdellah, Karim, Simone Thomas und Hinrich Abken. „Genetic Engineering of Autologous or Allogeneic Immune Effector Cells“. In The EBMT/EHA CAR-T Cell Handbook, 7–10. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94353-0_2.
Der volle Inhalt der QuelleVos, Jean-Michel H. „Herpesviruses as Genetic Vectors“. In Viruses in Human Gene Therapy, 109–40. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0555-2_5.
Der volle Inhalt der QuelleCox, William I., Russell R. Gettig und Enzo Paoletti. „Poxviruses as Genetic Vectors“. In Viruses in Human Gene Therapy, 141–78. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0555-2_6.
Der volle Inhalt der QuelleBevan, Michael, und Andrew Goldsbrough. „Design and Use of Agrobacterium Transformation Vectors“. In Genetic Engineering, 123–40. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-7081-3_7.
Der volle Inhalt der QuelleShepherd, Robert J. „Caulimoviruses as Potential Gene Vectors for Higher Plants“. In Genetic Engineering, 241–76. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-9456-7_13.
Der volle Inhalt der QuelleDingli, David, und Stephen J. Russell. „Genetic Targeting of Retroviral Vectors“. In Vector Targeting for Therapeutic Gene Delivery, 267–91. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003. http://dx.doi.org/10.1002/0471234303.ch13.
Der volle Inhalt der QuelleWickham, Thomas J. „Genetic Targeting of Adenoviral Vectors“. In Vector Targeting for Therapeutic Gene Delivery, 143–70. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003. http://dx.doi.org/10.1002/0471234303.ch7.
Der volle Inhalt der QuelleBouyer, Jérémy, und Eric Marois. „14. Genetic control of vectors“. In Ecology and Control of Vector-borne Diseases, 435–51. The Netherlands: Wageningen Academic Publishers, 2018. http://dx.doi.org/10.3920/978-90-8686-863-6_14.
Der volle Inhalt der QuelleNicklin, Stuart A., und Andrew H. Baker. „Development of Targeted Viral Vectors for Cardiovascular Gene Therapy“. In Genetic Engineering, 15–49. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0073-5_2.
Der volle Inhalt der QuelleBernstein, Alan, Stuart Berger, Dennis Huszar und John Dick. „Gene Transfer with Retrovirus Vectors“. In Genetic Engineering: Principles and Methods, 235–61. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4973-0_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Genetic vectors"
Alshahrani, Mohammed, Spyridon Samothrakis und Maria Fasli. „Identifying idealised vectors for emotion detection using CMA-ES“. In GECCO '19: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3319619.3322057.
Der volle Inhalt der QuelleFunaki, Ryohei, und Hideyuki Takagi. „Application of Gravity Vectors and Moving Vectors for the Acceleration of Both Differential Evolution and Interactive Differential Evolution“. In 2011 Fifth International Conference on Genetic and Evolutionary Computing (ICGEC). IEEE, 2011. http://dx.doi.org/10.1109/icgec.2011.71.
Der volle Inhalt der QuelleMadeira, Catarina, Sofia C. Ribeiro, Rui Mendes, Irina S. M. Pinheiro, Claudia L. da Silva und Joaquim M. S. Cabral. „Genetic engineering of stem cells by non-viral vectors“. In 2011 1st Portuguese Meeting in Bioengineering ¿ The Challenge of the XXI Century (ENBENG). IEEE, 2011. http://dx.doi.org/10.1109/enbeng.2011.6026044.
Der volle Inhalt der QuellePescador-Rojas, Miriam, und Carlos A. Coello Coello. „Studying the effect of techniques to generate reference vectors in many-objective optimization“. In GECCO '18: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3205651.3205684.
Der volle Inhalt der QuelleSato, Yuji, Mads Midtlyng und Mikiko Sato. „Diffusely Distributed Parallelization of MOEA/D with Edge Weight Vectors Sharing“. In GECCO '23 Companion: Companion Conference on Genetic and Evolutionary Computation. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3583133.3590738.
Der volle Inhalt der QuelleXianneng Li, S. Mabu, M. K. Mainali und K. Hirasawa. „Probabilistic model building Genetic Network Programming using multiple probability vectors“. In 2010 IEEE Region 10 Conference (TENCON 2010). IEEE, 2010. http://dx.doi.org/10.1109/tencon.2010.5686113.
Der volle Inhalt der QuelleFengli Sun, Quanhua Gao und Jinguo Wang. „Ridgelet Probabilistic Neural Network with Genetic Algorithm selecting center vectors“. In 2011 International Conference on Computer Science and Network Technology (ICCSNT). IEEE, 2011. http://dx.doi.org/10.1109/iccsnt.2011.6182206.
Der volle Inhalt der QuelleTanaka, Mariko, Yuki Yamagishi, Hidetoshi Nagai und Hiroyuki Sato. „Infeasible solution repair and MOEA/D sharing weight vectors for solving multi-objective set packing problems“. In GECCO '18: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3205651.3208765.
Der volle Inhalt der QuelleSánchez, Alberto Rodríguez, Antonin Ponsich und Antonio López Jaimes. „Generation techniques and a novel on-line adaptation strategy for weight vectors within decomposition-based MOEAs“. In GECCO '19: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3319619.3322055.
Der volle Inhalt der QuelleWu, Kai, und George Panoutsos. „High Dimensional Many Objective Optimisation through Diverse Creation and Categorisation of Reference Vectors“. In GECCO '23 Companion: Companion Conference on Genetic and Evolutionary Computation. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3583133.3590612.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Genetic vectors"
Dawson, William O., und Moshe Bar-Joseph. Creating an Ally from an Adversary: Genetic Manipulation of Citrus Tristeza. United States Department of Agriculture, Januar 2004. http://dx.doi.org/10.32747/2004.7586540.bard.
Der volle Inhalt der QuelleLiu, Zhanjiang John, Rex Dunham und Boaz Moav. Developmental and Evaluation of Advanced Expression Vectors with Both Enhanced Integration and Stable Expression for Transgenic Farmed Fish. United States Department of Agriculture, Dezember 2001. http://dx.doi.org/10.32747/2001.7585196.bard.
Der volle Inhalt der QuelleJung, Carina, Karl Indest, Matthew Carr, Richard Lance, Lyndsay Carrigee und Kayla Clark. Properties and detectability of rogue synthetic biology (SynBio) products in complex matrices. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45345.
Der volle Inhalt der QuellePerl, Avichai, Bruce I. Reisch und Ofra Lotan. Transgenic Endochitinase Producing Grapevine for the Improvement of Resistance to Powdery Mildew (Uncinula necator). United States Department of Agriculture, Januar 1994. http://dx.doi.org/10.32747/1994.7568766.bard.
Der volle Inhalt der QuelleUllman, Diane, James Moyer, Benjamin Raccah, Abed Gera, Meir Klein und Jacob Cohen. Tospoviruses Infecting Bulb Crops: Evolution, Diversity, Vector Specificity and Control. United States Department of Agriculture, September 2002. http://dx.doi.org/10.32747/2002.7695847.bard.
Der volle Inhalt der QuelleSingh, Anjali. What Is Optogenetics and How Does It Work? ConductScience, Juli 2022. http://dx.doi.org/10.55157/cs20220704.
Der volle Inhalt der QuelleMawassi, Munir, Baozhong Meng und Lorne Stobbs. Development of Virus Induced Gene Silencing Tools for Functional Genomics in Grapevine. United States Department of Agriculture, Juli 2013. http://dx.doi.org/10.32747/2013.7613887.bard.
Der volle Inhalt der QuelleMawassi, Munir, und Valerian V. Dolja. Role of the viral AlkB homologs in RNA repair. United States Department of Agriculture, Juni 2014. http://dx.doi.org/10.32747/2014.7594396.bard.
Der volle Inhalt der QuelleBar-Joseph, Moshe, William O. Dawson und Munir Mawassi. Role of Defective RNAs in Citrus Tristeza Virus Diseases. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575279.bard.
Der volle Inhalt der QuelleKnowles, Donald, und Monica Leszkowicz Mazuz. Transfected Babesia bovis expressing the anti-tick Bm86 antigen as a vaccine to limit tick infestation and protect against virulent challenge. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7598160.bard.
Der volle Inhalt der Quelle