Dissertationen zum Thema „Genetic transformation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Genetic transformation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Zainuddin. „Genetic transformation of wheat (Triticum aestivum L.)“. Title page, Contents and Abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09APSP/09apspz21.pdf.
Der volle Inhalt der QuelleButton, Eric A. „Regulation of T-DNA gene 7“. Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26177.
Der volle Inhalt der QuelleMedicine, Faculty of
Medical Genetics, Department of
Graduate
Tor, Mahmut. „Genetic transformation of yam (Dioscorea)“. Thesis, Imperial College London, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267504.
Der volle Inhalt der QuelleGartland, Kevan M. A. „Studies on plant genetic transformation“. Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236507.
Der volle Inhalt der QuelleFryer, Shirley Anne. „Genetic transformation of oilseed rape“. Thesis, University of Wolverhampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317928.
Der volle Inhalt der QuelleChen, Dong Fang. „Genetic transformation in the Gramineae“. Thesis, Open University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293321.
Der volle Inhalt der QuelleSoloki, Mahmod. „Genetic transformation of grape somatic embryos“. Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387659.
Der volle Inhalt der QuelleFaria, Maria José Sparça Salles de. „Red raspberry transformation using agrobacterium“. Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=69522.
Der volle Inhalt der QuelleThe binary plasmid pBI121 containing the marker genes NPTII and GUS encoding kanamycin resistance and $ beta$-glucuronidase activity, respectively, was successfully introduced into the Agrobacterium strain LBA4404, which is a disarmed C58 derivative. Transformation of 'Comet' red raspberry was apparently achieved by inoculating leaf disc explants with LBA4404 containing pBI121. The probable integration and expression of the foreign genes into the plant cells were confirmed by screening for kanamycin resistance, GUS assays and Southern blot analyses. This transformation system appears to be effective and may be useful in further studies on red raspberry for both introduction of genes for desirable agronomic traits and basic studies of gene expression.
Robson, Julia. „The construction of an expression vector for the transformation of the grape chloroplast genome“. Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53621.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The genetic information of plants is found in the nucleus, the mitochondria, and the plastids. The DNA of plastids is comprised of multiple copies of a double-stranded, circular, prokaryoticallyderived genome of -150 kb. The genome equivalents of plastid organelles in higher plant cells are an attractive target for genetic engineering as high protein expression levels are readily obtained due to the high genome copy number per organelle. The resultant proteins are contained within the plastid organelle and the corresponding transgenes are inherited, in most crop plants, uniparentally, preventing pollen transmission of DNA. Plastid transformation involves the uniform modification of all the plastid genome copies, a process facilitated by homologous recombination and the non-Mendelian segregation of plastids upon cell division. The plastid genomes are in a continuous state of inter- and intra-molecular exchange due to their common genetic complement. This enables the site-specific integration of any piece of DNA flanked by plastid targeting sequences, via homologous recombination. The attainment of homoplasmy, where all genomes are transformed, requires the inclusion of a plastid-specific selectable marker. Selective pressure favouring the propagation of the transformed genome copies, as well as the random segregation of plastids upon cell division, make it feasible to acquire uniformity and hence genetic stability. From this, a complete transplastomie line is obtained where all plastid genome copies present are transgenic, having eliminated all wild-type genome copies. The prokaryotic nature of the chloroplast genetic system enables expression of multiple proteins from polycistronic mRNAs, allowing the introduction of entire operons in a single transformation. Expression cassettes in vectors thus include single regulatory elements of plastid origin, and harbour genes encoding selectable and screenable markers, as well as one or more genes of interest. Each coding region is preceded by an appropriate translation control region to ensure efficient translation from the polycistronic mRNA. The function of a plastid transformation vector is to enable transfer and stable integration of foreign genes into the chloroplast genomes of higher plants. The expression vector constructed in this research is specific for the transformation of the grape chloroplast genome. Vitis vinifera L., from the family, Vitaceae, is the choice species for the production of wine and therefore our target for plastid transformation. All chloroplast derived regulatory elements and sequences included in the vector thus originated from this species.
AFRIKAANSE OPSOMMING: Die genetiese inligting van plante word gevind in die kern, die mitochondria, en die plastiede. Die DNA van plastiede bestaan uit veelvuldige kopieë van 'n ~ 150 kb dubbelstring, sirkulêre genoom van prokariotiese oorsprong. Die genoomekwivalente van plastiede in hoër plante is 'n aantreklike teiken vir genetiese manipulering, aangesien die hoë genoom kopiegetal per organel dit moontlik maak om gereeld hoë vlakke van proteïenuitdrukking te verkry. Hierdie proteïene word tot die plastied beperk, en die ooreenstemmende transgene word in die meeste plante sitoplasmies oorgeërf, sonder die oordrag van DNA deur die stuifmeel. Plastied transformasie behels die uniforme modifikasie van al die plastied genoomkopieë, 'n proses wat deur homoloë rekombinasie en die nie-Mendeliese segregasie van plastiede tydens seldeling gefasiliteer word. As gevolg van die gemeenskaplike genetiese komplement, vind aanhoudende interen intra-molekulêre uitruiling van plastiedgenome plaas. Dit maak die setel-spesifieke integrasie, via homoloë rekombinasie, van enige stuk DNA wat deur plastied teikenvolgordes begrens word, moontlik. Vir die verkrying van homoplasmie, waar alle genome getransformeer is, word die insluiting van 'n plastiedspesifieke selekteerbare merker benodig. Seleksiedruk wat die vermeerdering van die getransformeerde genoomkopieë bevoordeel, en die lukrake segregasie van plastiede tydens seldeling, maak dit moontlik om genetiese stabiliteit en uniformiteit van die genoom te verkry. Dit kan op sy beurt tot die verkryging van 'n volledige transplastomiese lyn lei, waar alle aanwesige plastiedgenome transgenies is, en wilde tipe genoomkopieë geëlimineer is. Die prokariotiese aard van die chloroplas genetiese sisteem maak die uitdrukking van veelvuldige proteïene vanaf polisistroniese mRNAs moontlik, wat die toevoeging van volledige operons in 'n enkele transformasie toelaat. Uitdrukkingskassette in vektore bevat dus enkel regulatoriese elemente van plastied oorsprong, gene wat kodeer vir selekteerbare en sifbare merkers, asook een of meer gene van belang (teikengene). Voor elke koderingsstreek, is daar ook 'n toepaslike translasie beheerstreek om doeltreffende translasie vanaf die polisistroniese mRNA te verseker. Die funksie van 'n plastied transformasie vektor is om die oordrag en stabiele integrasie van transgene in chloroplasgenome van hoër plante moontlik te maak. Die uitdrukkingsvektor wat in hierdie studie gekonstrueer is, is spesifiek vir die transformasie van die druif chloroplasgenoom. Vitis vinifera L., van die familie Vitaceae, is die voorkeur species vir die produksie van wyn, en daarom die teiken vir plastied transformasie. Alle chloroplast-afgeleide regulatoriese elemente en volgordes wat in hierdie vektor ingesluit is, het huloorsprong vanaf VUis vinifera L.
Cook, Marisa Anne. „Replicons derived from endogenously isolated plasmids used to classify plasmids occurring in marine sediment bacteria“. Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/25736.
Der volle Inhalt der QuelleStummer, Belinda E. „Micropropagation and genetic transformation of 'verticordia grandis' /“. Adelaide : Thesis (Ph.D.)--University of Adelaide, Departments of Plant and and Soil Sciences, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phs934.pdf.
Der volle Inhalt der QuelleSingh, S. „Somatic embryogenesis and genetic transformation in peanut“. Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2008. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2710.
Der volle Inhalt der QuelleWu, Jiang. „Transformation of Rhizoctonia solani“. Thesis, Wu, Jiang (2003) Transformation of Rhizoctonia solani. PhD thesis, Murdoch University, 2003. https://researchrepository.murdoch.edu.au/id/eprint/417/.
Der volle Inhalt der QuelleWu, Jiang. „Transformation of Rhizoctonia solani“. Wu, Jiang (2003) Transformation of Rhizoctonia solani. PhD thesis, Murdoch University, 2003. http://researchrepository.murdoch.edu.au/417/.
Der volle Inhalt der QuelleWilliamson, Phillip C. „A Novel Mechanism for Site-Directed Mutagenesis of Large Catabolic Plasmids Using Natural Transformation“. Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc2828/.
Der volle Inhalt der QuelleMorris, Alison Claire. „Genetic transformation of the mosquito Aedes aegypti using a transposable genetic element“. Thesis, University of Liverpool, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279703.
Der volle Inhalt der Quelleau, jiangwu@central murdoch edu, und Jiang Wu. „Transformation of Rhizoctonia solani“. Murdoch University, 2003. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20050728.141653.
Der volle Inhalt der QuelleWang, Tsung-Tsan 1959. „Transformant system and gene expression of yeast Schwanniomyces occidentalis“. Thesis, McGill University, 1999. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=35955.
Der volle Inhalt der QuelleA new transformation system of Schw. occidentalis has been developed. This system was based on vector YEp13 ( LEU2) and a stable leu auxotrophic mutant, Schw. occidentalis DW88, obtained by treating the yeast with 1-methyl-3-nitro-1-nitrosoguanidine. The transformation efficiency of YEp13 by spheroplast-mediating method was 103 transformants/mug DNA. The 2-mum replicon is proposed to be responsible for YEp13 replication in Schw. occidentalis. The YEp13 stability in Schw. occidentalis was low, but it kept its structure in the yeast, suggesting that Schw. occidentalis DW88 does not modify foreign DNA.
After analysis of 14 cloned Schw. occidentalis genes and comparison of associated genes from both Schw. occidentalis and S. cerevisiae, 25 codons were arbitrarily chosen as putative preferred codons for Schw. occidentalis. They are similar to those of S. cerevisiae, except for TTA for leucine, and AAA for lysine. Codon Bias Index (CBI), a criterion to evaluate gene expression, is calculated from preferred codons. A computer program (PCBI) which reads a gene containing introns was developed to quickly calculate CBI.
Schw. occidentalis DWSS should be a good host to produce and secrete heterologous proteins and the putative preferred codons and program PCBI can facilitate molecular study of Schw. occidentalis. (Abstract shortened by UMI.)
Zhou, Chen, und 周辰. „Genome-informed studies on Penicillium marneffei: horizontal gene transfer survey and differentialsecretomics“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41633672.
Der volle Inhalt der QuelleIglesias, Victor Alejandro. „Genetic transformation studies in wheat using particle bombardment /“. [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10628.
Der volle Inhalt der QuelleJiang, Liwen. „Somatic embryogenesis and genetic transformation in douglas-fir“. Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/29882.
Der volle Inhalt der QuelleForestry, Faculty of
Graduate
Travella, Silvia. „Improving and understanding the barley genetic transformation process“. Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365058.
Der volle Inhalt der QuelleTan, Chia Lock. „Tissue culture and genetic transformation of Theobroma cacao“. Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310835.
Der volle Inhalt der QuelleDeljou, Ali. „Tissue culture and genetic transformation in potato breeding“. Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339661.
Der volle Inhalt der QuelleOwuama, C. I. „Genetic transformation of Saccharomyces cerevisiae with chimaeric plasmids“. Thesis, University of Liverpool, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381362.
Der volle Inhalt der QuelleSparrow, Penelope Amelia Claire. „Plant morphogenesis and genetic transformation of horticultural brassicas“. Thesis, Open University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252364.
Der volle Inhalt der QuelleTolonen, Andrew Carl. „Prochlorococcus genetic transformation and genomics of nitrogen metabolism“. Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/43721.
Der volle Inhalt der QuelleIncludes bibliographical references.
Prochlorococcus, a unicellular cyanobacterium, is the most abundant phytoplankton in the oligotrophic, oceanic gyres where major plant nutrients such as nitrogen (N) and phosphorus (P) are at nanomolar concentrations. Nitrogen availability controls primary productivity in many of these regions. The cellular mechanisms that Prochlorococcus uses to acquire and metabolize nitrogen are thus central to its ecology. One of the goals of this thesis was to investigate how two Prochlorococcus strains responded on a physiological and genetic level to changes in ambient nitrogen. We characterized the N-starvation response of Prochlorococcus MED4 and MIT9313 by quantifying changes in global mRNA expression, chlorophyll fluorescence, and Fv/Fm along a time-series of increasing N starvation. In addition to efficiently scavenging ambient nitrogen, Prochlorococcus strains are hypothesized to niche-partition the water column by utilizing different N sources. We thus studied the global mRNA expression profiles of these two Prochlorococcus strains on different N sources. The recent sequencing of a number of Prochlorococcus genomes has revealed that nearly half of Prochlorococcus genes are of unknown function.
(cont.) Genetic methods such as reporter gene assays and tagged mutagenesis are critical tools for unveiling the function of these genes. As the basis for such approaches, another goal of this thesis was to find conditions by which interspecific conjugation with Escherichia coli could be used to transfer plasmid DNA into Prochlorococcus MIT9313. Following conjugation, E. coli were removed from the Prochlorococcus cultures by infection with E. coli phage T7. We applied these methods to show that an RSF1010-derived plasmid will replicate in Prochlorococcus MIT9313. When this plasmid was modified to contain green fluorescent protein (GFP) we detected its expression in Prochlorococcus by Western blot and cellular fluorescence. Further, we applied these conjugation methods to show that Tn5 will transpose in vivo in Prochlorococcus. Collectively, these methods provide a means to experimentally alter the expression of genes in the Prochlorococcus cell.
by Andrew Carl Tolonen.
Ph.D.
Mohandas, Kavitha. „Genetic transformation of the entomopathogenic deuteromycete, Metarhizium flavoviride“. Thesis, University of Bath, 1998. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245885.
Der volle Inhalt der QuelleKorban, Martine. „Agrobacterium-mediated transformation of common bean (Phaseolus vulgaris L.)“. Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41644.
Der volle Inhalt der QuelleBecker, Eric Christian. „Recognition of oriT at the termination of conjugal transfer by MobA, the R1162 DNA strand transferase“. Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2002. http://wwwlib.umi.com/cr/utexas/fullcit?p3077405.
Der volle Inhalt der QuelleVan, Eeden C. (Christiaan). „The construction of gene silencing transformation vectors for the introduction of multiple-virus resistance in grapevines“. Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/53764.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Viruses are some of the most important pathogens of grapevines. There are no effective chemical treatments, and no grapevine- or other natural resistance genes have been discovered against grapevine infecting viruses. The primary method of grapevine virus control is prevention by biological indexing and molecular- and serological screening of rootstocks and scions before propagation. Due to the spread of grapevine viruses through insect vectors, and in the case of GRSPaV the absence of serological screening, these methods of virus control are not always effective. In the past several methods, from cross-protection to pathogen derived resistance (PDR), have been applied to induce plant virus resistance, but with inconsistent results. In recent years the application of post-transcriptional gene silencing (PTGS), a naturally occurring plant defense mechanism, to induce targeted virus resistance has achieved great success. The Waterhouse research group has designed plant transformation vectors that facilitate specific virus resistance through PTGS. The primary focus of this study was the production of virus specific transformation vectors for the introduction of grapevine virus resistance. The Waterhouse system has been successfully utilised for the construction of three transformation vectors with the pHannibal vector as backbone. Each vector contains homologous virus coat protein (CP) gene segments, cloned in a complementary conformation upstream and downstream of an intron sequence. The primary vector (pHann-SAScon) contains complementary CP gene segments of both GRSPaV and GLRaV-3 and was designed for the introduction of multiple-virus resistance. For the construction of the primary vector the GRSPaV CP gene was isolated from RSP infected grapevines. A clone of the GLRaV-3 CP gene was acquired. The second vector (pHann- LR3CPsas) contains complementary CP gene segments of GLRaV-3. The third vector (pHann-LR2CPsas) contains complementary CP gene segments of GLRaV-2. The cassette containing the complementary CP gene segments of both GRSPaV and GLRaV-3 was cloned into pART27 (pART27-HSAScon), and used to transform N tabacum cv. Petit Havana (SRI), through A. tumefaciens mediated transformation. Unfortunately potential transformants failed to regenerate on rooting media; hence no molecular tests were performed to confirm transformation. Once successful transformants are generated, infection with a recombinant virus vector (consisting of PYX, the GFP gene as screenable marker and the complementary CP gene segments of both GRSPaV and GLRaV-3) will be used to test for the efficacy of the vectors to induce resistance. A secondary aim was added to this project when a need was identified within the South African viticulture industry for GRSPaV specific antibodies to be used in serological screening. To facilitate future serological detection of GRSPaV, the CP gene was isolated and expressed with a bacterial expression system (pETI4b) within the E. coli BL2I(DE3)pLysS cell line. The expressed protein will be used to generate GRSPaV CP specific antibodies.
AFRIKAANSE OPSOMMING: Virusse is van die belangrikste patogene by wingerd. Daar bestaan geen effektiewe chemiese beheer nie, en geen wingerd- of ander natuurlike weerstandsgene teen wingerdvirusse is al ontdek nie. Die primêre metode van beheer t.o.v. wingerdvirusse is voorkoming deur biologiese indeksering, en molekulêre- en serologiese toetsing van onderstokke en entlote voor verspreiding. As gevolg van die verspreiding van wingerdvirusse deur insekvektore, en in die geval van GRSPa V die tekort aan serologiese toetsing, is dié metodes van virusbeheer nie altyd effektief nie. In die verlede is metodes soos kruis-beskerming en patogeen-afgeleide weerstand (PDR) gebruik om virusweerstand te induseer, maar met inkonsekwente resultate. In onlangse jare is post-transkripsionele geenonderdrukking (PTGS), 'n natuurlike plantbeskermingsmeganisme, met groot sukses toegepas om geteikende virusweerstand te induseer. Die Waterhouse-navorsingsgroep het planttransformasievektore ontwerp wat spesifieke virusweerstand induseer d.m.v. PTGS. Die vervaardiging van virus spesifieke tranformasievektore vir die indusering van wingerdvirusweerstand was die primêre doelwit van hierdie studie. Die Waterhouse-sisteem was gebruik vir die konstruksie van drie transformasievektore, met die pHannibal vektor as basis. Elke vektor bevat homoloë virus kapsiedproteïen (CP) geensegmente, gekloneer in 'n komplementêre vorm stroom-op en stroom-af van 'n intronvolgorde. Die primêre vektor (pHann-SAScon) bevat komplementêre CP geensegmente van beide GRSPaV en GLRaV-3, en was ontwerp vir die indusering van veelvoudige-virusweerstand. Die CP-geen van GRSPa V was vanuit RSP-geïnfekteerde wingerd geïsoleer, vir die konstruksie van die primêre vektor. 'n Kloon van die GLRa V-3 CP-geen was verkry. Die tweede vektor (pHann-LR3CPsas) bevat komplementêre CP geensegmente van GLRaV-3. Die derde vektor (pHann-LR2CPsas) bevat komplementêre CP geensegmente van GLRa V-2. Die kasset bestaande uit die komplementêre CP geensegmente van beide GRSPaV en GLRaV-3, was gekloneer in pART27 (pART27-HSAScon), en gebruik om N tabacum cv. Petit Havana (SRI) te transformeer d.m.v. A. tumefaciens bemiddelde transformasie. Ongelukkig het potensiële transformante nie geregenereer op bewortelingsmedia nie; gevolglik was geen molekulêre toetse gedoen om transformasie te bevestig nie. Na suksesvolle transformante gegenereer is, sal infeksie met 'n rekombinante-virusvektor (bestaande uit PYX, die GFP geen as waarneembare merker en die komplementêre CP geensegmente van beide GRSPa V en GLRa V-3) gebruik word om die effektiwiteit van die vektore as weerstandsinduseerders te toets. 'n Sekondêre doelwit is by die projek gevoeg toe 'n behoefte aan GRSPaV spesifieke teenliggame binne die Suid-Afrikaanse wynbedryf geïdentifiseer is, vir gebruik in serologiese toetsing. Om toekomstige serologiese toetsing van GRSPa V te bemiddel, was die CP-geen geïsoleer en in 'n bakteriële uitdrukkingsisteem (PETI4b) uitgedruk, in die E. coli BL21(DE3)pLysS sellyn. Die uitgedrukte proteïne sal gebruik word vir die vervaardiging van GRSPa V CP spesifieke antiliggame.
梁子明 und Tze-ming Leung. „Immunological studies of a phosphorylcholine-specific antibody using gene transfer techniques“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1994. http://hub.hku.hk/bib/B31233740.
Der volle Inhalt der QuelleTiengtum, Pimol. „Towards the genetic manipulation of flower colour in Petunia and Curcuma“. Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269714.
Der volle Inhalt der QuelleSuso, Henri-Pierre. „Development of a system for the genetic transformation of white lupin (Lupinus albus)“. Thesis, University of Reading, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271196.
Der volle Inhalt der QuelleLeung, Tze-ming. „Immunological studies of a phosphorylcholine-specific antibody using gene transfer techniques /“. [Hong Kong] : University of Hong Kong, 1994. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13762680.
Der volle Inhalt der QuelleHusnain, Tayyab. „Transformation studies in the forage legume Onobrychis viciifolia“. Thesis, University of Nottingham, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.258236.
Der volle Inhalt der QuelleLimberis, Maria. „A lentiviral gene transfer vector for the treatment of cystic fibrosis airway disease“. Title page, synopsis and list of contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phl735.pdf.
Der volle Inhalt der QuelleCheng, Wai-sheung, und 鄭偉嫦. „PTEN-PKB in endometriosis and related malignant transformation“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B45009910.
Der volle Inhalt der QuelleZhang, Peng. „Studies on cassava (Manihot esculenta Crantz) transformation: towards genetic improvement /“. [S.l.] : [s.n.], 2000. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13962.
Der volle Inhalt der QuelleKridel, Robert. „The genetic basis of transformation and progression in follicular lymphoma“. Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/57547.
Der volle Inhalt der QuelleMedicine, Faculty of
Pathology and Laboratory Medicine, Department of
Graduate
Lee, Sun K. „Genetic transformation of broccoli and promoter tagging in Brassica species“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq24027.pdf.
Der volle Inhalt der QuelleTriggs, Heidi M. „Haploid production and genetic transformation of wheat (Triticum aestivum L.)“. Thesis, University of Nottingham, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243689.
Der volle Inhalt der QuelleDrake, Pascal M. W. „Approaches to the genetic transformation of Sitka spruce (Picea sitchensis)“. Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320788.
Der volle Inhalt der QuelleMoore, Ian Robert. „Development of a strategy for genetic transformation of plant mitochondria“. Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/11183.
Der volle Inhalt der QuelleSilva, José Rodrigo da. „Improvement of chickpea rhizobia by genetic transformation with symbiosis genes“. Doctoral thesis, Universidade de Évora, 2018. http://hdl.handle.net/10174/23169.
Der volle Inhalt der QuelleBurns, Kevin Andrew. „Genetic Detection of Neurogenesis and Astrocytic Transformation of Radial Glia“. University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1195153606.
Der volle Inhalt der QuellePavlova, Natalya Nickolayevna. „A Role for PVRL4-Driven Cell-Cell Interactions in Tumorigenesis“. Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10722.
Der volle Inhalt der QuelleDavis, Ashley Stuart. „Aspects of rice transformation using direct DNA uptake“. Thesis, University of Nottingham, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.258367.
Der volle Inhalt der QuelleKim, Changhyeon. „Development of a Genetic Transformation System of Raspberry Cultivars for Gene Function Analysis“. Thesis, North Dakota State University, 2018. https://hdl.handle.net/10365/29223.
Der volle Inhalt der QuelleCanseco-Sedano, Rodolfo. „Factors affecting the efficiency of gene transfer in mice“. Diss., This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-03172010-020810/.
Der volle Inhalt der Quelle