Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Genetic transformation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Genetic transformation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Genetic transformation"
Donmez, Dicle, Ozhan Simsek, Tolga Izgu, Yildiz Aka Kacar und Yesim Yalcin Mendi. „Genetic Transformation inCitrus“. Scientific World Journal 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/491207.
Der volle Inhalt der QuelleDe Bustos, A., R. Pérez und N. Jouve. „Study of the homologous recombination genetic system to improve genetic transformation of wheat“. Czech Journal of Genetics and Plant Breeding 41, Special Issue (31.07.2012): 290–93. http://dx.doi.org/10.17221/6195-cjgpb.
Der volle Inhalt der QuelleGietz, R. Daniel, und Robin A. Woods. „Genetic Transformation of Yeast“. BioTechniques 30, Nr. 4 (April 2001): 816–31. http://dx.doi.org/10.2144/01304rv02.
Der volle Inhalt der QuelleMathews, H., H. D. Wilde, R. E. Litz und H. Y. Wetzstein. „GENETIC TRANSFORMATION OF MANGO“. Acta Horticulturae, Nr. 341 (Mai 1993): 93–97. http://dx.doi.org/10.17660/actahortic.1993.341.8.
Der volle Inhalt der QuelleMoss, Robert. „Genetic Transformation of Bacteria“. American Biology Teacher 53, Nr. 3 (01.03.1991): 179–80. http://dx.doi.org/10.2307/4449256.
Der volle Inhalt der QuelleBhatia, C. R., Patricia Viegas, Anjali Bhagwat, Helena Mathews und N. K. Notani. „Genetic transformation of plants“. Proceedings / Indian Academy of Sciences 96, Nr. 2 (Juni 1986): 79–112. http://dx.doi.org/10.1007/bf03053326.
Der volle Inhalt der QuelleRibas, Alessandra Ferreira, Luiz Filipe Protasio Pereira und Luiz Gonzaga E. Vieira. „Genetic transformation of coffee“. Brazilian Journal of Plant Physiology 18, Nr. 1 (März 2006): 83–94. http://dx.doi.org/10.1590/s1677-04202006000100007.
Der volle Inhalt der QuelleLangeveld, S. A., S. Marinova, M. M. Gerrits, A. F. L. M. Derks und P. M. Boonekamp. „GENETIC TRANSFORMATION OF LILY“. Acta Horticulturae, Nr. 430 (Dezember 1997): 290. http://dx.doi.org/10.17660/actahortic.1997.430.43.
Der volle Inhalt der QuelleHe, Liya, Jiao Feng, Sha Lu, Zhiwen Chen, Chunmei Chen, Ya He, Xiuwen Yi und Liyan Xi. „Genetic transformation of fungi“. International Journal of Developmental Biology 61, Nr. 6-7 (2017): 375–81. http://dx.doi.org/10.1387/ijdb.160026lh.
Der volle Inhalt der QuelleTsuda, Masataka, Mikio Karita und Teruo Nakazawa. „Genetic Transformation inHelicobacter pylori“. Microbiology and Immunology 37, Nr. 1 (Januar 1993): 85–89. http://dx.doi.org/10.1111/j.1348-0421.1993.tb03184.x.
Der volle Inhalt der QuelleDissertationen zum Thema "Genetic transformation"
Zainuddin. „Genetic transformation of wheat (Triticum aestivum L.)“. Title page, Contents and Abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09APSP/09apspz21.pdf.
Der volle Inhalt der QuelleButton, Eric A. „Regulation of T-DNA gene 7“. Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26177.
Der volle Inhalt der QuelleMedicine, Faculty of
Medical Genetics, Department of
Graduate
Tor, Mahmut. „Genetic transformation of yam (Dioscorea)“. Thesis, Imperial College London, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267504.
Der volle Inhalt der QuelleGartland, Kevan M. A. „Studies on plant genetic transformation“. Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236507.
Der volle Inhalt der QuelleFryer, Shirley Anne. „Genetic transformation of oilseed rape“. Thesis, University of Wolverhampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317928.
Der volle Inhalt der QuelleChen, Dong Fang. „Genetic transformation in the Gramineae“. Thesis, Open University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293321.
Der volle Inhalt der QuelleSoloki, Mahmod. „Genetic transformation of grape somatic embryos“. Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387659.
Der volle Inhalt der QuelleFaria, Maria José Sparça Salles de. „Red raspberry transformation using agrobacterium“. Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=69522.
Der volle Inhalt der QuelleThe binary plasmid pBI121 containing the marker genes NPTII and GUS encoding kanamycin resistance and $ beta$-glucuronidase activity, respectively, was successfully introduced into the Agrobacterium strain LBA4404, which is a disarmed C58 derivative. Transformation of 'Comet' red raspberry was apparently achieved by inoculating leaf disc explants with LBA4404 containing pBI121. The probable integration and expression of the foreign genes into the plant cells were confirmed by screening for kanamycin resistance, GUS assays and Southern blot analyses. This transformation system appears to be effective and may be useful in further studies on red raspberry for both introduction of genes for desirable agronomic traits and basic studies of gene expression.
Robson, Julia. „The construction of an expression vector for the transformation of the grape chloroplast genome“. Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53621.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The genetic information of plants is found in the nucleus, the mitochondria, and the plastids. The DNA of plastids is comprised of multiple copies of a double-stranded, circular, prokaryoticallyderived genome of -150 kb. The genome equivalents of plastid organelles in higher plant cells are an attractive target for genetic engineering as high protein expression levels are readily obtained due to the high genome copy number per organelle. The resultant proteins are contained within the plastid organelle and the corresponding transgenes are inherited, in most crop plants, uniparentally, preventing pollen transmission of DNA. Plastid transformation involves the uniform modification of all the plastid genome copies, a process facilitated by homologous recombination and the non-Mendelian segregation of plastids upon cell division. The plastid genomes are in a continuous state of inter- and intra-molecular exchange due to their common genetic complement. This enables the site-specific integration of any piece of DNA flanked by plastid targeting sequences, via homologous recombination. The attainment of homoplasmy, where all genomes are transformed, requires the inclusion of a plastid-specific selectable marker. Selective pressure favouring the propagation of the transformed genome copies, as well as the random segregation of plastids upon cell division, make it feasible to acquire uniformity and hence genetic stability. From this, a complete transplastomie line is obtained where all plastid genome copies present are transgenic, having eliminated all wild-type genome copies. The prokaryotic nature of the chloroplast genetic system enables expression of multiple proteins from polycistronic mRNAs, allowing the introduction of entire operons in a single transformation. Expression cassettes in vectors thus include single regulatory elements of plastid origin, and harbour genes encoding selectable and screenable markers, as well as one or more genes of interest. Each coding region is preceded by an appropriate translation control region to ensure efficient translation from the polycistronic mRNA. The function of a plastid transformation vector is to enable transfer and stable integration of foreign genes into the chloroplast genomes of higher plants. The expression vector constructed in this research is specific for the transformation of the grape chloroplast genome. Vitis vinifera L., from the family, Vitaceae, is the choice species for the production of wine and therefore our target for plastid transformation. All chloroplast derived regulatory elements and sequences included in the vector thus originated from this species.
AFRIKAANSE OPSOMMING: Die genetiese inligting van plante word gevind in die kern, die mitochondria, en die plastiede. Die DNA van plastiede bestaan uit veelvuldige kopieë van 'n ~ 150 kb dubbelstring, sirkulêre genoom van prokariotiese oorsprong. Die genoomekwivalente van plastiede in hoër plante is 'n aantreklike teiken vir genetiese manipulering, aangesien die hoë genoom kopiegetal per organel dit moontlik maak om gereeld hoë vlakke van proteïenuitdrukking te verkry. Hierdie proteïene word tot die plastied beperk, en die ooreenstemmende transgene word in die meeste plante sitoplasmies oorgeërf, sonder die oordrag van DNA deur die stuifmeel. Plastied transformasie behels die uniforme modifikasie van al die plastied genoomkopieë, 'n proses wat deur homoloë rekombinasie en die nie-Mendeliese segregasie van plastiede tydens seldeling gefasiliteer word. As gevolg van die gemeenskaplike genetiese komplement, vind aanhoudende interen intra-molekulêre uitruiling van plastiedgenome plaas. Dit maak die setel-spesifieke integrasie, via homoloë rekombinasie, van enige stuk DNA wat deur plastied teikenvolgordes begrens word, moontlik. Vir die verkrying van homoplasmie, waar alle genome getransformeer is, word die insluiting van 'n plastiedspesifieke selekteerbare merker benodig. Seleksiedruk wat die vermeerdering van die getransformeerde genoomkopieë bevoordeel, en die lukrake segregasie van plastiede tydens seldeling, maak dit moontlik om genetiese stabiliteit en uniformiteit van die genoom te verkry. Dit kan op sy beurt tot die verkryging van 'n volledige transplastomiese lyn lei, waar alle aanwesige plastiedgenome transgenies is, en wilde tipe genoomkopieë geëlimineer is. Die prokariotiese aard van die chloroplas genetiese sisteem maak die uitdrukking van veelvuldige proteïene vanaf polisistroniese mRNAs moontlik, wat die toevoeging van volledige operons in 'n enkele transformasie toelaat. Uitdrukkingskassette in vektore bevat dus enkel regulatoriese elemente van plastied oorsprong, gene wat kodeer vir selekteerbare en sifbare merkers, asook een of meer gene van belang (teikengene). Voor elke koderingsstreek, is daar ook 'n toepaslike translasie beheerstreek om doeltreffende translasie vanaf die polisistroniese mRNA te verseker. Die funksie van 'n plastied transformasie vektor is om die oordrag en stabiele integrasie van transgene in chloroplasgenome van hoër plante moontlik te maak. Die uitdrukkingsvektor wat in hierdie studie gekonstrueer is, is spesifiek vir die transformasie van die druif chloroplasgenoom. Vitis vinifera L., van die familie Vitaceae, is die voorkeur species vir die produksie van wyn, en daarom die teiken vir plastied transformasie. Alle chloroplast-afgeleide regulatoriese elemente en volgordes wat in hierdie vektor ingesluit is, het huloorsprong vanaf VUis vinifera L.
Cook, Marisa Anne. „Replicons derived from endogenously isolated plasmids used to classify plasmids occurring in marine sediment bacteria“. Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/25736.
Der volle Inhalt der QuelleBücher zum Thema "Genetic transformation"
Linskens, H. F., und J. F. Jackson. Genetic transformation of plants. Berlin: Springer, 2010.
Den vollen Inhalt der Quelle findenWalden, R. Genetic transformation in plants. Englewood Cliffs, N.J: Prentice Hall, 1989.
Den vollen Inhalt der Quelle findenStewart, C. Neal. Plant transformation technologies. Ames, Iowa: Wiley-Blackwell, 2011.
Den vollen Inhalt der Quelle findenJackson, J. F., und H. F. Linskens, Hrsg. Genetic Transformation of Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-07424-4.
Der volle Inhalt der QuelleO, Butler L., Harwood Colin R und Moseley B. E. B, Hrsg. Genetic transformation and expression. Andover, Hants [England]: Intercept, 1990.
Den vollen Inhalt der Quelle findenO, Butler L., Harwood Colin und Moseley B. E. B, Hrsg. Genetic transformation and expression. Andover: Intercept, 1989.
Den vollen Inhalt der Quelle findenWellington, E. M. H. 1954- und Elsas, J. D. van 1951-, Hrsg. Genetic interactions between microorgamisms in the natural environment: Gene transfer in nature. Manchester: Manchester University Press, 1992.
Den vollen Inhalt der Quelle findenKoch-Brandt, Claudia. Gentransfer: Prinzipien, Experimente, Anwendung bei Saügern. Stuttgart: G. Thieme, 1993.
Den vollen Inhalt der Quelle finden1957-, Draper John, Hrsg. Plantgenetic transformation and gene expression: A laboratory manual. Oxford: Blackwell Scientific, 1988.
Den vollen Inhalt der Quelle findenFryer, Shirley Anne. Genetic transformation of oilseed rape. Wolverhampton: University of Wolverhampton, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Genetic transformation"
Birge, Edward A. „Genetic Transformation“. In Bacterial and Bacteriophage Genetics, 199–219. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4757-1995-6_8.
Der volle Inhalt der QuelleBirge, Edward A. „Genetic Transformation“. In Bacterial and Bacteriophage Genetics, 257–76. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4757-2328-1_10.
Der volle Inhalt der QuelleKroth, Peter G. „Genetic Transformation“. In Protein Targeting Protocols, 257–67. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-466-7_17.
Der volle Inhalt der QuelleMondal, Tapan Kumar. „Genetic Transformation“. In Breeding and Biotechnology of Tea and its Wild Species, 85–92. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1704-6_5.
Der volle Inhalt der QuelleBirge, Edward A. „Genetic Transformation“. In Bacterial and Bacteriophage Genetics, 315–39. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-3258-0_10.
Der volle Inhalt der QuellePeck, Stewart B., Carol C. Mapes, Netta Dorchin, John B. Heppner, Eileen A. Buss, Gustavo Moya-Raygoza, Marjorie A. Hoy et al. „Genetic Transformation“. In Encyclopedia of Entomology, 1597–99. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_1062.
Der volle Inhalt der QuelleMondal, Tapan Kumar. „Genetic Transformation“. In Tea: Genome and Genetics, 127–38. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8868-6_5.
Der volle Inhalt der QuelleJacobsen, Hans-Jörg. „Genetic Transformation“. In Developments in Plant Breeding, 125–32. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9211-6_5.
Der volle Inhalt der QuelleBilang, Roland, Johannes Fütterer und Christof Sautter. „Transformation of Cereals“. In Genetic Engineering, 113–57. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4707-5_7.
Der volle Inhalt der QuelleXu, Jun-Wei. „Genetic Transformation System“. In Compendium of Plant Genomes, 165–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75710-6_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Genetic transformation"
de França, Fabrício Olivetti. „Transformation-interaction-rational representation for symbolic regression“. In GECCO '22: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3512290.3528695.
Der volle Inhalt der QuelleAldeia, Guilherme Seidyo Imai, und Fabrício Olivetti de França. „Interaction-transformation evolutionary algorithm with coefficients optimization“. In GECCO '22: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3520304.3533987.
Der volle Inhalt der QuelleMayer, Benjamin E., und Kay Hamacher. „Stochastic tunneling transformation during selection in genetic algorithm“. In GECCO '14: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2576768.2598243.
Der volle Inhalt der QuelleAhn, Eun Yeong, Tracy Mullen und John Yen. „Finding feature transformation functions using genetic algorithm“. In the 12th annual conference comp. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1830761.1830862.
Der volle Inhalt der QuellePan, Shuaiqun, Diederick Vermetten, Manuel López-Ibáñez, Thomas Bäck und Hao Wang. „Transfer Learning of Surrogate Models via Domain Affine Transformation“. In GECCO '24: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3638529.3654032.
Der volle Inhalt der QuelleNarinç, Doğan, und Ali Aygün. „A non parametric data transformation technique for quantitative genetic analyses: The rank transformation“. In II. INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2017. Author(s), 2017. http://dx.doi.org/10.1063/1.4981708.
Der volle Inhalt der QuelleSpagnolo, Nicolo, Enrico Maiorino, Chiara Vitelli, Marco Bentivegna, Andrea Crespi, Roberta Ramponi, Paolo Mataloni, Roberto Osellame und Fabio Sciarrino. „Genetic algorithms to learn an unknown linear transformation“. In 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8087443.
Der volle Inhalt der QuelleFaridmoayer, Sogol, Mohammadreza Sharbaf und Shekoufeh Kolahdouz-Rahimi. „Optimization of model transformation output using genetic algorithm“. In 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI). IEEE, 2017. http://dx.doi.org/10.1109/kbei.2017.8324973.
Der volle Inhalt der QuelleLi, Minghui, Kwok Shun Ho und Gordon Hayward. „Beamspace transformation for data reduction using genetic algorithms“. In 2009 IEEE International Ultrasonics Symposium. IEEE, 2009. http://dx.doi.org/10.1109/ultsym.2009.5442004.
Der volle Inhalt der QuelleAit ElHara, Ouassim, Anne Auger und Nikolaus Hansen. „Permuted Orthogonal Block-Diagonal Transformation Matrices for Large Scale Optimization Benchmarking“. In GECCO '16: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2908812.2908937.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Genetic transformation"
Voth, Wayne. Genetic Transformation Among Azotobacter Species. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.2613.
Der volle Inhalt der QuelleSeger, Yvette R. Genetic Requirements for the Transformation of Human Cells. Fort Belvoir, VA: Defense Technical Information Center, Juli 2002. http://dx.doi.org/10.21236/ada410207.
Der volle Inhalt der QuelleSeger, Yvette. Genetic Requirements for the Transformation of Human Cells. Fort Belvoir, VA: Defense Technical Information Center, Juli 2004. http://dx.doi.org/10.21236/ada429117.
Der volle Inhalt der QuelleSeger, Yvette M. Genetic Requirements for the Transformation of Human Cells. Fort Belvoir, VA: Defense Technical Information Center, Juli 2003. http://dx.doi.org/10.21236/ada418793.
Der volle Inhalt der QuelleGera, Abed, Abed Watad, P. Ueng, Hei-Ti Hsu, Kathryn Kamo, Peter Ueng und A. Lipsky. Genetic Transformation of Flowering Bulb Crops for Virus Resistance. United States Department of Agriculture, Januar 2001. http://dx.doi.org/10.32747/2001.7575293.bard.
Der volle Inhalt der QuelleGray, Dennis, und Victor Gaba. Genotype, Explant and Growth Regulator Effects in the Determination of Adventitious Regeneratin in Curcurbits, in Aid of Genetic Transformation. United States Department of Agriculture, Juni 1992. http://dx.doi.org/10.32747/1992.7561060.bard.
Der volle Inhalt der QuelleNorelli, John L., Moshe Flaishman, Herb Aldwinckle und David Gidoni. Regulated expression of site-specific DNA recombination for precision genetic engineering of apple. United States Department of Agriculture, März 2005. http://dx.doi.org/10.32747/2005.7587214.bard.
Der volle Inhalt der QuelleRon, Eliora, und Eugene Eugene Nester. Global functional genomics of plant cell transformation by agrobacterium. United States Department of Agriculture, März 2009. http://dx.doi.org/10.32747/2009.7695860.bard.
Der volle Inhalt der QuelleTzfira, Tzvi, Michael Elbaum und Sharon Wolf. DNA transfer by Agrobacterium: a cooperative interaction of ssDNA, virulence proteins, and plant host factors. United States Department of Agriculture, Dezember 2005. http://dx.doi.org/10.32747/2005.7695881.bard.
Der volle Inhalt der QuelleStern, David, und Gadi Schuster. Manipulating Chloroplast Gene Expression: A Genetic and Mechanistic Analysis of Processes that Control RNA Stability. United States Department of Agriculture, Juni 2004. http://dx.doi.org/10.32747/2004.7586541.bard.
Der volle Inhalt der Quelle