Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Genetic algorithms“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Genetic algorithms" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Genetic algorithms"
Sumida, Brian. „Genetics for genetic algorithms“. ACM SIGBIO Newsletter 12, Nr. 2 (Juni 1992): 44–46. http://dx.doi.org/10.1145/130686.130694.
Der volle Inhalt der QuelleRaol, Jitendra R., und Abhijit Jalisatgi. „From genetics to genetic algorithms“. Resonance 1, Nr. 8 (August 1996): 43–54. http://dx.doi.org/10.1007/bf02837022.
Der volle Inhalt der QuelleBabu, M. Nishidhar, Y. Kiran und A. Ramesh V. Rajendra. „Tackling Real-Coded Genetic Algorithms“. International Journal of Trend in Scientific Research and Development Volume-2, Issue-1 (31.12.2017): 217–23. http://dx.doi.org/10.31142/ijtsrd5905.
Der volle Inhalt der QuelleNico, Nico, Novrido Charibaldi und Yuli Fauziah. „Comparison of Memetic Algorithm and Genetic Algorithm on Nurse Picket Scheduling at Public Health Center“. International Journal of Artificial Intelligence & Robotics (IJAIR) 4, Nr. 1 (30.05.2022): 9–23. http://dx.doi.org/10.25139/ijair.v4i1.4323.
Der volle Inhalt der QuelleAbbas, Basim K. „Genetic Algorithms for Quadratic Equations“. Aug-Sept 2023, Nr. 35 (26.08.2023): 36–42. http://dx.doi.org/10.55529/jecnam.35.36.42.
Der volle Inhalt der QuelleCarnahan, J., und R. Sinha. „Nature's algorithms [genetic algorithms]“. IEEE Potentials 20, Nr. 2 (2001): 21–24. http://dx.doi.org/10.1109/45.954644.
Der volle Inhalt der QuelleFrenzel, J. F. „Genetic algorithms“. IEEE Potentials 12, Nr. 3 (Oktober 1993): 21–24. http://dx.doi.org/10.1109/45.282292.
Der volle Inhalt der QuelleFulkerson, William F. „Genetic Algorithms“. Journal of the American Statistical Association 97, Nr. 457 (März 2002): 366. http://dx.doi.org/10.1198/jasa.2002.s468.
Der volle Inhalt der QuelleForrest, Stephanie. „Genetic algorithms“. ACM Computing Surveys 28, Nr. 1 (März 1996): 77–80. http://dx.doi.org/10.1145/234313.234350.
Der volle Inhalt der QuelleHolland, John H. „Genetic Algorithms“. Scientific American 267, Nr. 1 (Juli 1992): 66–72. http://dx.doi.org/10.1038/scientificamerican0792-66.
Der volle Inhalt der QuelleDissertationen zum Thema "Genetic algorithms"
Bland, Ian Michael. „Generic systolic arrays for genetic algorithms“. Thesis, University of Reading, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312529.
Der volle Inhalt der QuelleAguiar, Marilton Sanchotene de. „Análise formal da complexidade de algoritmos genéticos“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1998. http://hdl.handle.net/10183/25941.
Der volle Inhalt der QuelleThe objective of the work is to study the viability of treating optimization problems, considered intractable, through Genetic Algorithms, developing approaches for the qualitative evaluation of a Genetic Algorithm. Inside this theme, approached areas: complexity, classes of problems, analysis and development of algorithms and Genetic Algorithms, this last one being central object of the study. As product of the study of this theme, a development method of Genetic Algorithms is proposed, using the whole formal study of types of problems, development of approximate algorithms and complexity analysis. The fact that a problem theoretically solvable isn’t enough to mean that it is solvable in pratice. A problem is denominated easy if in the worst case it possesses an algorithm reasonably efficient. And an algorithm is said reasonably efficient when a polynomial p exists such that for any entrance size n the algorithm terminates at maximum of p(n) steps [SZW 84]. Since a polynomial can be of very high order, then an algorithm of polynomial complexity can be very inefficient. The premise of the Genetic Algorithms is that one can find approximate solutions of problems of great computational complexity by means of a process of simulated evolution [LAG 96]. As product of the study of this theme, a method of development of Genetic Algorithms with the quality conscience is proposed, using the whole formal study of types of problems, development of approximate algorithms and complexity analysis. The axiom set has the purpose of giving the semantics of the algorithm, in other words, it defines formally the operation of the algorithm, more specifically of the functions and procedures of the algorithm. And this, facilitates the planner of algorithms a larger safety in the development, because in order to prove the correction of a Genetic Algorithm that satisfies that model it is only necessary to prove that the procedures satisfy the axioms. To have conscience of the quality of an approximate algorithm, two factors are important: the accuracy and the complexity. This work lifts the important points for the study of the complexity of a Genetic Algorithm. Unhappily, they are conflicting factors, because as larger the accuracy, worse (higher) it is the complexity, and vice-versa. Thus, a study of the quality of a Genetic Algorithm, considered an approximate algorithm, would be only complete with the consideration of these two factors. But, this work provides a great step in direction of the study of the viability of the treatment of optimization problems through Genetic Algorithms.
Abu-Bakar, Nordin. „Adaptive genetic algorithms“. Thesis, University of Essex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343268.
Der volle Inhalt der QuelleHayes, Christina Savannah Maria. „Generic properties of the infinite population genetic algorithm“. Diss., Montana State University, 2006. http://etd.lib.montana.edu/etd/2006/hayes/HayesC0806.pdf.
Der volle Inhalt der QuelleWagner, Stefan. „Looking inside genetic algorithms /“. Linz : Trauner, 2005. http://aleph.unisg.ch/hsgscan/hm00116856.pdf.
Der volle Inhalt der QuelleCole, Rowena Marie. „Clustering with genetic algorithms“. University of Western Australia. Dept. of Computer Science, 1998. http://theses.library.uwa.edu.au/adt-WU2003.0008.
Der volle Inhalt der QuelleLapthorn, Barry Thomas. „Helioseismology and genetic algorithms“. Thesis, Queen Mary, University of London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271261.
Der volle Inhalt der QuelleDelman, Bethany. „Genetic algorithms in cryptography /“. Link to online version, 2003. https://ritdml.rit.edu/dspace/handle/1850/263.
Der volle Inhalt der QuelleKrüger, Franz David, und Mohamad Nabeel. „Hyperparameter Tuning Using Genetic Algorithms : A study of genetic algorithms impact and performance for optimization of ML algorithms“. Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42404.
Der volle Inhalt der QuelleAs machine learning (ML) is being more and more frequent in the business world, information gathering through Data mining (DM) is on the rise, and DM-practitioners are generally using several thumb rules to avoid having to spend a decent amount of time to tune the hyperparameters (parameters that control the learning process) of an ML algorithm to gain a high accuracy score. The proposal in this report is to conduct an approach that systematically optimizes the ML algorithms using genetic algorithms (GA) and to evaluate if and how the model should be constructed to find global solutions for a specific data set. By implementing a GA approach on two ML-algorithms, K-nearest neighbors, and Random Forest, on two numerical data sets, Iris data set and Wisconsin breast cancer data set, the model is evaluated by its accuracy scores as well as the computational time which then is compared towards a search method, specifically exhaustive search. The results have shown that it is assumed that GA works well in finding great accuracy scores in a reasonable amount of time. There are some limitations as the parameter’s significance towards an ML algorithm may vary.
Yan, Ping. „Theory of simple genetic algorithms“. Thesis, University of Macau, 2000. http://umaclib3.umac.mo/record=b1446649.
Der volle Inhalt der QuelleBücher zum Thema "Genetic algorithms"
Man, K. F., K. S. Tang und S. Kwong. Genetic Algorithms. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0577-0.
Der volle Inhalt der Quelle1942-, Buckles Bill P., und Petry Fred, Hrsg. Genetic algorithms. Los Alamitos, Calif: IEEE Computer Society Press, 1986.
Den vollen Inhalt der Quelle findenAnup, Kumar, und Gupta Yash P, Hrsg. Genetic algorithms. Oxford: Pergamon, 1995.
Den vollen Inhalt der Quelle findenDr, Herrera Francisco, und Verdegay José-Luis, Hrsg. Genetic algorithms and soft computing. Heidelberg: Physica-Verlag, 1996.
Den vollen Inhalt der Quelle findenLuque, Gabriel, und Enrique Alba. Parallel Genetic Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22084-5.
Der volle Inhalt der QuelleMutingi, Michael, und Charles Mbohwa. Grouping Genetic Algorithms. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44394-2.
Der volle Inhalt der QuelleE, Haupt S., Hrsg. Practical genetic algorithms. 2. Aufl. Hoboken, N.J: John Wiley, 2004.
Den vollen Inhalt der Quelle findenE, Haupt S., Hrsg. Practical genetic algorithms. New York: Wiley, 1998.
Den vollen Inhalt der Quelle findenLance, Chambers, Hrsg. The practical handbook of genetic algorithms: Applications. 2. Aufl. Boca Raton, Fla: Chapman & Hall/CRC, 2001.
Den vollen Inhalt der Quelle findenLance, Chambers, Hrsg. Practical handbook of genetic algorithms. Boca Raton: CRC Press, 1995.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Genetic algorithms"
Hardy, Yorick, und Willi-Hans Steeb. „Genetic Algorithms“. In Classical and Quantum Computing, 313–400. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8366-5_15.
Der volle Inhalt der QuelleDu, Ke-Lin, und M. N. S. Swamy. „Genetic Algorithms“. In Search and Optimization by Metaheuristics, 37–69. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41192-7_3.
Der volle Inhalt der QuelleSastry, Kumara, David E. Goldberg und Graham Kendall. „Genetic Algorithms“. In Search Methodologies, 93–117. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-6940-7_4.
Der volle Inhalt der QuelleRathore, Heena. „Genetic Algorithms“. In Mapping Biological Systems to Network Systems, 97–106. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29782-8_8.
Der volle Inhalt der QuelleAnsari, Nirwan, und Edwin Hou. „Genetic Algorithms“. In Computational Intelligence for Optimization, 83–97. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6331-0_6.
Der volle Inhalt der QuelleRowe, Jonathan E. „Genetic Algorithms“. In Springer Handbook of Computational Intelligence, 825–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-43505-2_42.
Der volle Inhalt der QuelleReeves, Colin R. „Genetic Algorithms“. In Handbook of Metaheuristics, 109–39. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1665-5_5.
Der volle Inhalt der QuelleDracopoulos, Dimitris C. „Genetic Algorithms“. In Perspectives in Neural Computing, 111–31. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0903-7_7.
Der volle Inhalt der QuelleKingdon, Jason. „Genetic Algorithms“. In Perspectives in Neural Computing, 55–80. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0949-5_4.
Der volle Inhalt der QuelleDawid, Herbert. „Genetic Algorithms“. In Lecture Notes in Economics and Mathematical Systems, 37–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-00211-7_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Genetic algorithms"
Skomorokhov, Alexander O. „Genetic algorithms“. In the conference. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/253341.253399.
Der volle Inhalt der QuelleAlfonseca, Manuel. „Genetic algorithms“. In the international conference. New York, New York, USA: ACM Press, 1991. http://dx.doi.org/10.1145/114054.114056.
Der volle Inhalt der QuelleButt, Fouad, und Abdolreza Abhari. „Genetic algorithms“. In the 2010 Spring Simulation Multiconference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1878537.1878779.
Der volle Inhalt der QuellePandey, Hari Mohan, Anurag Dixit und Deepti Mehrotra. „Genetic algorithms“. In the CUBE International Information Technology Conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2381716.2381766.
Der volle Inhalt der QuelleChapman, Colin D., Kazuhiro Saitou und Mark J. Jakiela. „Genetic Algorithms As an Approach to Configuration and Topology Design“. In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0338.
Der volle Inhalt der QuelleCarlson, Susan E., Michael Ingrim und Ronald Shonkwiler. „Component Selection Using Genetic Algorithms“. In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0336.
Der volle Inhalt der QuelleJesus, Alexandre D., Arnaud Liefooghe, Bilel Derbel und Luís Paquete. „Algorithm selection of anytime algorithms“. In GECCO '20: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3377930.3390185.
Der volle Inhalt der QuelleLadkany, George S., und Mohamed B. Trabia. „Incorporating Twinkling in Genetic Algorithms for Global Optimization“. In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49256.
Der volle Inhalt der QuelleMisir, Mustafa, Stephanus Daniel Handoko und Hoong Chuin Lau. „Building algorithm portfolios for memetic algorithms“. In GECCO '14: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2598394.2598455.
Der volle Inhalt der QuelleAlba, Enrique. „Cellular genetic algorithms“. In GECCO '14: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2598394.2605356.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Genetic algorithms"
Arthur, Jennifer Ann. Genetic Algorithms. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1375151.
Der volle Inhalt der QuelleSharp, David H., John Reinitz und Eric Mjolsness. Genetic Algorithms for Genetic Neural Nets. Fort Belvoir, VA: Defense Technical Information Center, Januar 1991. http://dx.doi.org/10.21236/ada256223.
Der volle Inhalt der QuelleKargupta, H. Messy genetic algorithms: Recent developments. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/378868.
Der volle Inhalt der QuelleMessa, K., und M. Lybanon. Curve Fitting Using Genetic Algorithms. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1991. http://dx.doi.org/10.21236/ada247206.
Der volle Inhalt der QuelleThomas, E. V. Frequency selection using genetic algorithms. Office of Scientific and Technical Information (OSTI), Mai 1993. http://dx.doi.org/10.2172/10177075.
Der volle Inhalt der QuelleVlek, R. J., und D. J. M. Willems. Recipe reconstruction with genetic algorithms. Wageningen: Wageningen Food & Biobased Research, 2021. http://dx.doi.org/10.18174/540621.
Der volle Inhalt der QuelleCobb, Helen G., und John J. Grefenstette. Genetic Algorithms for Tracking Changing Environments. Fort Belvoir, VA: Defense Technical Information Center, Januar 1993. http://dx.doi.org/10.21236/ada294075.
Der volle Inhalt der QuellePittman, Jennifer, und C. A. Murthy. Optimal Line Fitting Using Genetic Algorithms. Fort Belvoir, VA: Defense Technical Information Center, Juli 1997. http://dx.doi.org/10.21236/ada328266.
Der volle Inhalt der QuelleGoldberg, David. Competent Probabilistic Model Building Genetic Algorithms. Fort Belvoir, VA: Defense Technical Information Center, Juli 2003. http://dx.doi.org/10.21236/ada416564.
Der volle Inhalt der QuelleVemuri, V. R. Genetic algorithms at UC Davis/LLNL. Office of Scientific and Technical Information (OSTI), Dezember 1993. http://dx.doi.org/10.2172/10122640.
Der volle Inhalt der Quelle