Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Generalized Feynman-Kac formula.

Zeitschriftenartikel zum Thema „Generalized Feynman-Kac formula“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-20 Zeitschriftenartikel für die Forschung zum Thema "Generalized Feynman-Kac formula" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

CHEN, CHUAN-ZHONG, ZHI-MING MA und WEI SUN. „ON GIRSANOV AND GENERALIZED FEYNMAN–KAC TRANSFORMATIONS FOR SYMMETRIC MARKOV PROCESSES“. Infinite Dimensional Analysis, Quantum Probability and Related Topics 10, Nr. 02 (Juni 2007): 141–63. http://dx.doi.org/10.1142/s0219025707002671.

Der volle Inhalt der Quelle
Annotation:
Let X be a Markov process, which is assumed to be associated with a symmetric Dirichlet form [Formula: see text]. For [Formula: see text], the extended Dirichlet space, we have the classical Fukushima's decomposition: [Formula: see text], where [Formula: see text] is a quasi-continuous version of u, [Formula: see text] the martingale part and [Formula: see text] the zero energy part. In this paper, we investigate two important transformations for X, the Girsanov transform induced by [Formula: see text] and the generalized Feynman–Kac transform induced by [Formula: see text]. For the Girsanov transform, we present necessary and sufficient conditions for which to induce a positive supermartingale and hence to determine another Markov process [Formula: see text]. Moreover, we characterize the symmetric Dirichlet form associated with the Girsanov transformed process [Formula: see text]. For the generalized Feynman–Kac transform, we give a necessary and sufficient condition for the generalized Feynman–Kac semigroup to be strongly continuous.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

OUERDIANE, HABIB, und JOSÉ LUIS SILVA. „GENERALIZED FEYNMAN–KAC FORMULA WITH STOCHASTIC POTENTIAL“. Infinite Dimensional Analysis, Quantum Probability and Related Topics 05, Nr. 02 (Juni 2002): 243–55. http://dx.doi.org/10.1142/s0219025702000808.

Der volle Inhalt der Quelle
Annotation:
In this paper we study the solution of the stochastic heat equation where the potential V and the initial condition f are generalized stochastic processes. We construct explicitly the solution and we prove that it belongs to the generalized function space [Formula: see text].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ettaieb, Aymen, Narjess Turki Khalifa und Habib Ouerdiane. „Quantum white noise Feynman–Kac formula“. Random Operators and Stochastic Equations 26, Nr. 2 (01.06.2018): 75–87. http://dx.doi.org/10.1515/rose-2018-0007.

Der volle Inhalt der Quelle
Annotation:
Abstract In this paper, we give a probabilistic representation of the heat equation associated with the quantum K-Gross Laplacian using infinite-dimensional stochastic calculus in two variables. Applying the heat semigroup to the particular case where the operator is the multiplication one, we establish a relation between the classical and the quantum heat semigroup. Finally, using a combination between convolution calculus and the generalized stochastic calculus, we give a generalization of the Feynman–Kac formula.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Herzog, Bodo. „Adopting Feynman–Kac Formula in Stochastic Differential Equations with (Sub-)Fractional Brownian Motion“. Mathematics 10, Nr. 3 (23.01.2022): 340. http://dx.doi.org/10.3390/math10030340.

Der volle Inhalt der Quelle
Annotation:
The aim of this work is to establish and generalize a relationship between fractional partial differential equations (fPDEs) and stochastic differential equations (SDEs) to a wider class of stochastic processes, including fractional Brownian motions {BtH,t≥0} and sub-fractional Brownian motions {ξtH,t≥0} with Hurst parameter H∈(12,1). We start by establishing the connection between a fPDE and SDE via the Feynman–Kac Theorem, which provides a stochastic representation of a general Cauchy problem. In hindsight, we extend this connection by assuming SDEs with fractional- and sub-fractional Brownian motions and prove the generalized Feynman–Kac formulas under a (sub-)fractional Brownian motion. An application of the theorem demonstrates, as a by-product, the solution of a fractional integral, which has relevance in probability theory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pardoux, Etienne, und Aurel Răşcanu. „Continuity of the Feynman–Kac formula for a generalized parabolic equation“. Stochastics 89, Nr. 5 (16.01.2017): 726–52. http://dx.doi.org/10.1080/17442508.2016.1276911.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

HIROSHIMA, FUMIO, TAKASHI ICHINOSE und JÓZSEF LŐRINCZI. „PATH INTEGRAL REPRESENTATION FOR SCHRÖDINGER OPERATORS WITH BERNSTEIN FUNCTIONS OF THE LAPLACIAN“. Reviews in Mathematical Physics 24, Nr. 06 (17.06.2012): 1250013. http://dx.doi.org/10.1142/s0129055x12500134.

Der volle Inhalt der Quelle
Annotation:
Path integral representations for generalized Schrödinger operators obtained under a class of Bernstein functions of the Laplacian are established. The one-to-one correspondence of Bernstein functions with Lévy subordinators is used, thereby the role of Brownian motion entering the standard Feynman–Kac formula is taken here by subordinate Brownian motion. As specific examples, fractional and relativistic Schrödinger operators with magnetic field and spin are covered. Results on self-adjointness of these operators are obtained under conditions allowing for singular magnetic fields and singular external potentials as well as arbitrary integer and half-integer spin values. This approach also allows to propose a notion of generalized Kato class for which an Lp-Lq bound of the associated generalized Schrödinger semigroup is shown. As a consequence, diamagnetic and energy comparison inequalities are also derived.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sun, Hui, und Yangyang Lyu. „Temporal Hölder continuity of the parabolic Anderson model driven by a class of time-independent Gaussian fields with rough initial conditions“. AIMS Mathematics 9, Nr. 12 (2024): 34838–62. https://doi.org/10.3934/math.20241659.

Der volle Inhalt der Quelle
Annotation:
<p>In this paper, we considered the parabolic Anderson model with a class of time-independent generalized Gaussian fields on $ \mathbb{R}^d $, which included fractional white noise, Bessel field, massive free field, and other nonstationary Gaussian fields. Under the rough initial conditions, we constructed the Feynman-Kac formula as a solution in the Stratonovich integral by Brownian bridge, and then proved the Hölder continuity of the solution with respect to the time variable. As a comparison, we also studied the Hölder continuity under the regular initial conditions that $ u_0\equiv C $ and $ u_0\in C^\kappa(\mathbb{R}^d) $ with $ \kappa\in(0, 1] $.</p>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Caffarel, Michel, und Pierre Claverie. „Treatment of the Schrödinger equation through a Monte Carlo method based upon the generalized Feynman-Kac formula“. Journal of Statistical Physics 43, Nr. 5-6 (Juni 1986): 797–801. http://dx.doi.org/10.1007/bf02628305.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Caffarel, Michel, und Pierre Claverie. „Development of a pure diffusion quantum Monte Carlo method using a full generalized Feynman–Kac formula. I. Formalism“. Journal of Chemical Physics 88, Nr. 2 (15.01.1988): 1088–99. http://dx.doi.org/10.1063/1.454227.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Caffarel, Michel, und Pierre Claverie. „Development of a pure diffusion quantum Monte Carlo method using a full generalized Feynman–Kac formula. II. Applications to simple systems“. Journal of Chemical Physics 88, Nr. 2 (15.01.1988): 1100–1109. http://dx.doi.org/10.1063/1.454228.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Zhao, Huaizhong. „The travelling wave fronts of nonlinear reaction–diffusion systems via Friedlin's stochastic approaches“. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 124, Nr. 2 (1994): 273–99. http://dx.doi.org/10.1017/s030821050002847x.

Der volle Inhalt der Quelle
Annotation:
In this paper we study the asymptotic behaviour of reaction–diffusion systems with a small parameter by using then-dimensional Feynman–Kac formula and large deviation theory. The generalised solutions are introduced in Section 2. We obtain the travelling wave joining an unstable steady state and an asymptotically stable steady state of a diffusionless dynamical system in a reaction–diffusion system with nonlinear ergodic interactions, and a special case with nonlinear reducible interactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

ROGERS, ALICE. „SUPERSYMMETRY AND BROWNIAN MOTION ON SUPERMANIFOLDS“. Infinite Dimensional Analysis, Quantum Probability and Related Topics 06, supp01 (September 2003): 83–102. http://dx.doi.org/10.1142/s0219025703001225.

Der volle Inhalt der Quelle
Annotation:
An anticommuting analogue of Brownian motion, corresponding to fermionic quantum mechanics, is developed, and combined with classical Brownian motion to give a generalised Feynman-Kac-Itô formula for paths in geometric supermanifolds. This formula is applied to give a rigorous version of the proofs of the Atiyah-Singer index theorem based on supersymmetric quantum mechanics. After a discussion of the BFV approach to the quantization of theories with symmetry, it is shown how the quantization of the topological particle leads to the supersymmetric model introduced by Witten in his study of Morse theory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Wang, Hanxiao. „Extended backward stochastic Volterra integral equations, Quasilinear parabolic equations, and Feynman–Kac formula“. Stochastics and Dynamics 21, Nr. 01 (11.03.2020): 2150004. http://dx.doi.org/10.1142/s0219493721500040.

Der volle Inhalt der Quelle
Annotation:
This paper is concerned with the relationship between backward stochastic Volterra integral equations (BSVIEs, for short) and a kind of non-local quasilinear (and possibly degenerate) parabolic equations. As a natural extension of BSVIEs, the extended BSVIEs (EBSVIEs, for short) are introduced and investigated. Under some mild conditions, the well-posedness of EBSVIEs is established and some regularity results of the adapted solution to EBSVIEs are obtained via Malliavin calculus. Then it is shown that a given function expressed in terms of the adapted solution to EBSVIEs uniquely solves a certain system of non-local parabolic equations, which generalizes the famous nonlinear Feynman–Kac formula in Pardoux–Peng [Backward stochastic differential equations and quasilinear parabolic partial differential equations, in Stochastic Partial Differential Equations and Their Applications (Springer, 1992), pp. 200–217].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Akhtari, Bahar, Francesca Biagini, Andrea Mazzon und Katharina Oberpriller. „Generalized Feynman–Kac formula under volatility uncertainty“. Stochastic Processes and their Applications, Dezember 2022. http://dx.doi.org/10.1016/j.spa.2022.12.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Lyu, Yangyang, und Hui Sun. „Spatial Hölder continuity for the parabolic Anderson model with the singular initial conditions“. Journal of Mathematical Physics 65, Nr. 11 (01.11.2024). http://dx.doi.org/10.1063/5.0172994.

Der volle Inhalt der Quelle
Annotation:
Under the singular initial conditions, we consider the parabolic Anderson model driven by the time-independent generalized Gaussian fields, which include some frequently-used non-stationary Gaussian fields. When the initial value u0 belongs to the weighted Besov space with negative regularity Bq,∞−κ,wλ, it is proved that there exists a unique pathwise solution for the model in the Young sense. Moreover, if u0 also satisfies the measure-valued initial condition, by the Feynman-Kac formula based on Brownian bridge, we find that the solution owns a spatially Hölder continuous modification.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Datta, Sumita. „Quantum simulation of non-Born–Oppenheimer dynamics in molecular systems by path integrals“. International Journal of Modern Physics B, 19.08.2023. http://dx.doi.org/10.1142/s0217979224503132.

Der volle Inhalt der Quelle
Annotation:
A numerical algorithm based on the probabilistic path integral approach for solving Schrödinger equation has been devised to treat molecular systems without Born–Oppenheimer approximation in the nonrelativistic limit at zero temperature as an alternative to conventional variational and perturbation methods. Using high-quality variational trial functions and path integral method based on generalized Feynman–Kac method, we have been able to calculate the non-Born–Oppenheimer energy for hydrogen molecule for the [Formula: see text] state and hydrogen molecular ion. Combining these values and the value for ionization potential for atomic hydrogen, the dissociation energy and ionization potential for hydrogen molecules have been determined to be 36 113.672(3)[Formula: see text]cm[Formula: see text] and 124 446.066(10)[Formula: see text]cm[Formula: see text], respectively. Our results favorably compare with other theoretical and experimental results and thus show the promise of being a nonperturbative alternative for testing fundamental physical theories.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

„Approximate travelling waves for generalized KPP equations and classical mechanics“. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 446, Nr. 1928 (08.09.1994): 529–54. http://dx.doi.org/10.1098/rspa.1994.0119.

Der volle Inhalt der Quelle
Annotation:
We consider the existence of approximate travelling waves of generalized KPP equations in which the initial distribution can depend on a small parameter μ which in the limit μ → 0 is the sum of some δ -functions or a step function. Using the method of Elworthy & Truman (1982) we construct a classical path which is the backward flow of a classical newtonian mechanics with given initial position and velocity before the time at which the caustic appears. By the Feynman–Kac formula and the Maruyama–Girsanov–Cameron–Martin transformation we obtain an identity from which, with a late caustic assumption, we see the propagation of the global wave front and the shape of the trough. Our theory shows clearly how the initial distribution contributes to the propagation of the travelling wave. Finally, we prove a Huygens principle for KPP equations on complete riemannian manifolds without cut locus, with some bounds on their volume element, in particular Cartan–Hadamard manifolds.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Datta, Sumita. „Computing quantum correlation functions by importance Sampling method based on path integrals“. International Journal of Modern Physics B, 26.09.2022. http://dx.doi.org/10.1142/s0217979223500248.

Der volle Inhalt der Quelle
Annotation:
In this paper, an importance sampling method based on the Generalized Feynman–Kac (GFK) method has been used to calculate the mean values of quantum observables from quantum correlation functions for many-body systems with the Born–Oppenheimer approximation in the nonrelativistic limit both at zero and finite temperature. Specifically, the expectation values [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] for the ground state of the lithium and beryllium and the density matrix, the partition function, the internal energy and the specific heat of a system of quantum harmonic oscillators are computed, in good agreement with the best nonrelativistic values for these quantities. Although the initial results are encouraging, more experimentation will be needed to improve the other existing numerical results beyond chemical accuracies specially for the last two properties for lithium and beryllium. Also more work needs to be done to improve the trial functions for finite temperature calculations. Although these results look promising, more work needs to be done to achieve the spectroscopic accuracy at zero temperature and to estimate the finite temperature effects from the non-Born–Oppenheimer calculations. Also more experimentation will be needed to study the convergence criteria for the inverse properties for atoms at zero temperature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Bender, Christian, Marie Bormann und Yana A. Butko. „Subordination principle and Feynman-Kac formulae for generalized time-fractional evolution equations“. Fractional Calculus and Applied Analysis, 19.08.2022. http://dx.doi.org/10.1007/s13540-022-00082-8.

Der volle Inhalt der Quelle
Annotation:
AbstractWe consider a class of generalized time-fractional evolution equations containing a fairly general memory kernel k and an operator L being the generator of a strongly continuous semigroup. We show that a subordination principle holds for such evolution equations and obtain Feynman-Kac formulae for solutions of these equations with the use of different stochastic processes, such as subordinate Markov processes and randomly scaled Gaussian processes. In particular, we obtain some Feynman-Kac formulae with generalized grey Brownian motion and other related self-similar processes with stationary increments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Bressloff, Paul C. „Encounter-based reaction-subdiffusion model I: surface adsorption and the local time propagator“. Journal of Physics A: Mathematical and Theoretical, 25.09.2023. http://dx.doi.org/10.1088/1751-8121/acfcf3.

Der volle Inhalt der Quelle
Annotation:
Abstract In this paper, we develop an encounter-based model of partial surface adsorption for fractional diffusion in a bounded domain. We take the probability of adsorption to depend on the amount of particle-surface contact time, as specified by a Brownian functional known as the boundary local time $\ell(t)$. If the rate of adsorption is state dependent, then the adsorption process is non-Markovian, reflecting the fact that surface activation/deactivation proceeds progressively by repeated particle encounters. The generalized adsorption event is identified as the first time that the local time crosses a randomly generated threshold. Different models of adsorption (Markovian and non-Markovian) then correspond to different choices for the random threshold probability density $\psi(\ell)$. The marginal probability density for particle position $\X(t)$ prior to absorption depends on $\psi$ and the joint probability density for the pair $(\X(t),\ell(t))$, also known as the local time propagator. In the case of normal diffusion one can use a Feynman-Kac formula to derive an evolution equation for the propagator. Here we derive the local time propagator equation for fractional diffusion by taking a continuum limit of a heavy-tailed continuous-time random walk (CTRW).&#xD;We begin by considering a CTRW on a one-dimensional lattice with a reflecting boundary at $n=0$. We derive an evolution equation for the joint probability density of the particle location $N(t)\in \{n\in {\mathbb Z},n\geq 0\}$ and the amount of time $\chi(t)$ spent at the origin. The continuum limit involves rescaling $\chi(t)$ by a factor $1/\Delta x$, where $\Delta x$ is the lattice spacing. In the limit $\Delta x \rightarrow 0$, the rescaled functional $\chi(t)$ becomes the Brownian local time at $x=0$. We use our encounter-based model to investigate the effects of subdiffusion and non-Markovian adsorption on the long-time behavior of the first passage time (FPT) density in a finite interval $[0,L]$ with a reflecting boundary at $x=L$. In particular, we determine how the choice of function $\psi$ affects the large-$t$ power law decay of the FPT density. Finally, we indicate how to extend the model to higher spatial dimensions.&#xD;
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie