Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Generalized complex Lamé coefficients“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Generalized complex Lamé coefficients" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Generalized complex Lamé coefficients"
Joshi, Nalini, und Andrew Pickering. „Generalized Halphen systems“. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 136, Nr. 6 (Dezember 2006): 1287–301. http://dx.doi.org/10.1017/s0308210500004984.
Der volle Inhalt der QuelleKhomasuridze, N. „Representation of Solutions of Some Boundary Value Problems of Elasticity by a Sum of the Solutions of Other Boundary Value Problems“. gmj 10, Nr. 2 (Juni 2003): 257–70. http://dx.doi.org/10.1515/gmj.2003.257.
Der volle Inhalt der QuelleXIA, BINGXING, und VIET HA HOANG. „BEST N-TERM GPC APPROXIMATIONS FOR A CLASS OF STOCHASTIC LINEAR ELASTICITY EQUATIONS“. Mathematical Models and Methods in Applied Sciences 24, Nr. 03 (29.12.2013): 513–52. http://dx.doi.org/10.1142/s0218202513500589.
Der volle Inhalt der QuellePeherstorfer, F. „Explicit generalized zolotarev polynomials with complex coefficients“. Constructive Approximation 13, Nr. 2 (Juni 1997): 261–69. http://dx.doi.org/10.1007/bf02678468.
Der volle Inhalt der QuellePeherstorfer, F. „Explicit Generalized Zolotarev Polynomials with Complex Coefficients“. Constructive Approximation 13, Nr. 2 (01.07.1997): 261–69. http://dx.doi.org/10.1007/s003659900042.
Der volle Inhalt der QuelleRamachandran, C., T. Soupramanien und J. Sokół. „On a Generalization of Bounded Univalent Function of Complex Order“. Journal of Computational and Theoretical Nanoscience 15, Nr. 2 (01.02.2018): 601–5. http://dx.doi.org/10.1166/jctn.2018.7130.
Der volle Inhalt der QuelleDeniz, Erhan, Jay M. Jahangiri, Samaneh G. Hamidi und Sibel K. Kına. „Faber polynomial coefficients for generalized bi-subordinate functions of complex order“. Journal of Mathematical Inequalities, Nr. 3 (2018): 645–53. http://dx.doi.org/10.7153/jmi-2018-12-49.
Der volle Inhalt der QuelleZhang, Sheng, Lijie Zhang und Bo Xu. „Rational Waves and Complex Dynamics: Analytical Insights into a Generalized Nonlinear Schrödinger Equation with Distributed Coefficients“. Complexity 2019 (21.03.2019): 1–17. http://dx.doi.org/10.1155/2019/3206503.
Der volle Inhalt der QuellePolosin, V. G. „Shape measures of generalized beta distributions“. Journal of Physics: Conference Series 2094, Nr. 2 (01.11.2021): 022009. http://dx.doi.org/10.1088/1742-6596/2094/2/022009.
Der volle Inhalt der QuelleTeshaev, Muhsin, Ismoil Safarov, Dilshoda Ibragimova, Doniyor Rayimov und Sharif Akhmedov. „Stationary response of the system “Cylindrical shell – viscoelastic filler” to the effect of a moving load“. Journal of Physics: Conference Series 2697, Nr. 1 (01.02.2024): 012004. http://dx.doi.org/10.1088/1742-6596/2697/1/012004.
Der volle Inhalt der QuelleDissertationen zum Thema "Generalized complex Lamé coefficients"
Bouzzit, Aziz. „Ellipsométrie acoustique pour le suivi et la caractérisation de matériaux complexes“. Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1304.
Der volle Inhalt der QuelleComplex materials are at the heart of major societal challenges in most major fields such as energy, transport, environment, heritage conservation/restoration, health and safety. Because of the opportunities for innovation offered in terms of features, these materials are giving rise to new problems of multi-physical and multi-scale analysis and understanding. The same applies to the instrumentation needed to characterize them.Acoustic methods, which are widely used in the non-destructive characterization of complex media, make use of the propagation properties of mechanical waves in these materials, which can be heterogeneous and anisotropic.In a multi-scale approach, the advantage of ultrasonic methods is that they are particularly sensitive to mechanical properties such as elasticity, rigidity and viscosity. The heterogeneous and multiphase nature of a complex medium thus leads to the notion of a viscoelastic medium, characterized by generalized complex Lamé coefficients (��∗, ��∗) and their variation as a function of frequency.The objective of this thesis is to develop a method for characterizing these complex viscoelastic materials that simultaneously measures the variation of the two generalized complex Lamé coefficients (��∗, ��∗) versus the frequency. The proposed approach is to follow, in space and in time, the propagation of the Rayleigh wave and to extract its ellipsometric parameters (ellipticity χ and orientation θ) in addition to the propagation parameters (k' and k'') conventionally determined. Based on the wave detection by 3D laser vibrometry at the surface of the complex material, and by means of 2D Gabor analysis in Quaternion space, the estimation of propagation and ellipsometric parameters gives access to the complete characterization of the complex material only by studying the interaction of a Rayleigh wave with the medium.The theoretical developments proposed in this work, together with experimental and simulation results, confirm the value of acoustic ellipsometry for characterizing these complex materials
Bücher zum Thema "Generalized complex Lamé coefficients"
Wüstholz, Gisbert, und Clemens Fuchs, Hrsg. Arithmetic and Geometry. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691193779.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Generalized complex Lamé coefficients"
Ignatidis, Panagiotis, Henrik von der Haar, Christoph Hennecke und Friedrich Dinkelacker. „Impact of Mixing on the Signature of Combustor Defects“. In Regeneration of Complex Capital Goods, 95–113. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-51395-4_6.
Der volle Inhalt der QuelleEgelstaff, P. A. „Collective modes of motion at low frequencies“. In An Introduction To The Liquid state, 280–95. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780198510123.003.0014.
Der volle Inhalt der QuelleKwitt, Roland, Peter Meerwald und Andreas Uhl. „Blind Detection of Additive Spread-Spectrum Watermarking in the Dual-Tree Complex Wavelet Transform Domain“. In Crime Prevention Technologies and Applications for Advancing Criminal Investigation, 53–65. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-1758-2.ch005.
Der volle Inhalt der QuelleZinn-Justin, Jean. „Large order behaviour of perturbation theory“. In Quantum Field Theory and Critical Phenomena, 960–74. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834625.003.0040.
Der volle Inhalt der QuelleCriss, Robert E. „Nonequilibrium Fractionation and Isotopic Transport“. In Principles of Stable Isotope Distribution. Oxford University Press, 1999. http://dx.doi.org/10.1093/oso/9780195117752.003.0006.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Generalized complex Lamé coefficients"
Hiremath, Nandeesh, Nicholas Motahari und Narayanan Komerath. „Generalized Approach for Slung-Load Aerodynamics“. In Vertical Flight Society 72nd Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11563.
Der volle Inhalt der QuelleSu, Shigong, und Xianzhong Su. „Generalized Characteristic Method for Orthotropic Media“. In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0549.
Der volle Inhalt der QuelleBlumenthal, Robert F., Michal Siorek und Sunil Patil. „Framework for Machine Learning-Based Turbulence Modeling to Accurately Predict the Complex Flows in Gas Turbines“. In ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/gt2024-128443.
Der volle Inhalt der QuelleSutulo, Serge, und C. Guedes Soares. „A Generalized Strip Theory for Curvilinear Motion in Waves“. In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57936.
Der volle Inhalt der QuelleGamo, Hideya. „Quasi-evanescent waves of the total internal reflection at the lossy or gain medium“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.fx3.
Der volle Inhalt der QuelleZvorykin, Alexander, Roman Popov, Mykola Bobyr und Igor Pioro. „Low-Cycle Strength of Elements of Constructions“. In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81860.
Der volle Inhalt der QuelleDávid, Alexandra, und S. C. Sinha. „Some Ideas on the Local Control of Nonlinear Systems With Time-Periodic Coefficients“. In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8381.
Der volle Inhalt der QuellePanza, Michael J. „Eigenstructure Calculation for Mixed Vibratory Systems Composed of a Continuous Beam and Concentrated Actuators“. In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21570.
Der volle Inhalt der QuelleYosibash, Zohar, und Barna A. Szabó. „Failure Analysis of Composite Materials and Multi Material Interfaces“. In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0145.
Der volle Inhalt der QuelleBelloli, Alberto, Oliver Thomaschewski und Paolo Ermanni. „Optimum Placement of Piezoelectric Ceramic Modules for Vibration Suppression of Highly Constrained Structures“. In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84614.
Der volle Inhalt der Quelle