Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Gene selection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Gene selection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Gene selection"
Liu, Junjie, Peng Li, Liuyang Lu, Lanfen Xie, Xiling Chen und Baizhong Zhang. „Selection and evaluation of potential reference genes for gene expression analysis in Avena fatua Linn“. Plant Protection Science 55, No. 1 (20.11.2018): 61–71. http://dx.doi.org/10.17221/20/2018-pps.
Der volle Inhalt der QuelleR, Dr Prema. „Feature Selection for Gene Expression Data Analysis – A Review“. International Journal of Psychosocial Rehabilitation 24, Nr. 5 (25.05.2020): 6955–64. http://dx.doi.org/10.37200/ijpr/v24i5/pr2020695.
Der volle Inhalt der QuelleLee, K. E., N. Sha, E. R. Dougherty, M. Vannucci und B. K. Mallick. „Gene selection: a Bayesian variable selection approach“. Bioinformatics 19, Nr. 1 (01.01.2003): 90–97. http://dx.doi.org/10.1093/bioinformatics/19.1.90.
Der volle Inhalt der QuelleKlee, Eric W., Stephen C. Ekker und Lynda B. M. Ellis. „Target selection forDanio rerio functional genomics“. genesis 30, Nr. 3 (2001): 123–25. http://dx.doi.org/10.1002/gene.1045.
Der volle Inhalt der QuelleTsakas, SC. „Species versus gene selection“. Genetics Selection Evolution 21, Nr. 3 (1989): 247. http://dx.doi.org/10.1186/1297-9686-21-3-247.
Der volle Inhalt der QuelleGreenspan, R. J. „Selection, Gene Interaction, and Flexible Gene Networks“. Cold Spring Harbor Symposia on Quantitative Biology 74 (01.01.2009): 131–38. http://dx.doi.org/10.1101/sqb.2009.74.029.
Der volle Inhalt der QuelleD., Saravanakumar. „Improving Microarray Data Classification Using Optimized Clustering-Based Hybrid Gene Selection Algorithm“. Journal of Advanced Research in Dynamical and Control Systems 51, SP3 (28.02.2020): 486–95. http://dx.doi.org/10.5373/jardcs/v12sp3/20201283.
Der volle Inhalt der QuelleNesvadbová, M., und A. Knoll. „Evaluation of reference genes for gene expression studies in pig muscle tissue by real-time PCR“. Czech Journal of Animal Science 56, No. 5 (30.05.2011): 213–16. http://dx.doi.org/10.17221/1428-cjas.
Der volle Inhalt der QuelleGilad, Yoav, Alicia Oshlack und Scott A. Rifkin. „Natural selection on gene expression“. Trends in Genetics 22, Nr. 8 (August 2006): 456–61. http://dx.doi.org/10.1016/j.tig.2006.06.002.
Der volle Inhalt der QuelleBehar, Hilla, und Marcus W. Feldman. „Gene-culture coevolution under selection“. Theoretical Population Biology 121 (Mai 2018): 33–44. http://dx.doi.org/10.1016/j.tpb.2018.03.001.
Der volle Inhalt der QuelleDissertationen zum Thema "Gene selection"
Petronella, Nicholas. „Gene Conversions and Selection in the Gene Families of Primates“. Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20538.
Der volle Inhalt der QuelleZid, Mouldi. „Gene Conversions in the Siglec and CEA Immunoglobulin Gene Families of Primates“. Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23625.
Der volle Inhalt der QuelleLiu, Zhilin. „Gene expression profiling of bovine ovarian follicular selection“. Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4490.
Der volle Inhalt der QuelleThe entire dissertation/thesis text is included in the research.pf file; the official abstract appears in the short.pf file (which also appears in the research.pf); a non-technical general description, or public abstract, appears in the public.pf file. Title from title screen of research.pf file (viewed on May 6, 2009) Vita. Includes bibliographical references.
Huisman, Jisca. „Gene Flow and Natural Selection in Atlantic Salmon“. Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for biologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-16991.
Der volle Inhalt der QuelleChen, Li. „Ranking-Based Methods for Gene Selection in Microarray Data“. Scholar Commons, 2006. http://scholarcommons.usf.edu/etd/3888.
Der volle Inhalt der QuelleMedeiros, Lucas Paoliello de. „Coevolution in mutualistic networks: gene flow and selection mosaics“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/41/41134/tde-17102017-154829/.
Der volle Inhalt der QuelleInterações ecológicas como predação, competição e mutualismo são importantes forças que influenciam a evolução de espécies. Chamamos de coevolução a mudança evolutiva recíproca em espécies que interagem. A Teoria do Mosaico Geográfico da Coevolução (TMGC) fornece um arcabouço teórico para entender como conjuntos de populações coevoluem ao longo do espaço. Dois aspectos fundamentais da TMGC são o fluxo gênico entre populações e a presença de mosaicos de seleção, isto é, conjuntos de locais com regimes de seleção particulares. Diversos estudos exploraram como o acoplamento entre fenótipos de diferentes espécies evolui em pares ou pequenos grupos de espécies. Entretanto, interações ecológicas frequentemente formam grandes redes que conectam dezenas de espécies presentes em uma comunidade. Em redes de mutualismos, por exemplo, a organização das interações pode influenciar processos ecológicos e evolutivos. Um próximo passo para a compreensão do processo coevolutivo consiste em investigar como aspectos da TMGC influenciam a evolução de espécies em redes de interações. Nesta dissertação, tentamos preencher esta lacuna usando um modelo matemático de coevolução, ferramentas de redes complexas e informação sobre redes mutualistas empíricas. Nossas simulações numéricas do modelo coevolutivo apontam para três principais conclusões. Primeiro, o fluxo gênico influencia os padrões fenotípicos gerados por coevolução e pode favorecer a emergência de acoplamento fenotípico entre espécies dependendo do mosaico de seleção. Segundo, a organização de redes mutualistas influencia a coevolução, mas este efeito pode desaparecer quando o fluxo gênico favorece acoplamento fenotípico. Mutualismos íntimos, como proteção de plantas hospedeiras por formigas, formam redes pequenas e compartimentalizadas que geram um maior acoplamento fenotípico do que as redes grandes e aninhadas típicas de mutualismos entre espécies de vida livre, como polinização. Por fim, a fragmentação de habitat, ao extinguir o fluxo gênico, pode reduzir as adaptações recíprocas entre espécies e ao mesmo tempo tornar cada espécie mais adaptada ao seu ambiente abiótico local. Em suma, mostramos que interações complexas entre fluxo gênico, estrutura geográfica da seleção e organização de redes ecológicas moldam a evolução de grandes grupos de espécies. Dessa forma, podemos traçar previsões sobre como impactos ambientais como a fragmentação de habitat irão alterar a evolução de interações ecológicas
Dai, Xiaotian. „Novel Statistical Models for Quantitative Shape-Gene Association Selection“. DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/6856.
Der volle Inhalt der QuellePerucchini, Matteo. „The cervid PrP gene : patterns of variability and selection“. Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/15634.
Der volle Inhalt der QuelleRiddoch, B. „Selection component analysis of the PGI polymorphism in Sphaeroma rugicauda“. Thesis, University of Essex, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378440.
Der volle Inhalt der QuellePanji, Sumir. „Identification of bacterial pathogenic gene classes subject to diversifying selection“. Thesis, University of the Western Cape, 2009. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_5842_1297942831.
Der volle Inhalt der QuelleAvailability of genome sequences for numerous bacterial species comprising of different bacterial strains allows elucidation of species and strain specific adaptations that facilitate their survival in widely fluctuating micro-environments and enhance their pathogenic potential. Different bacterial species use different strategies in their pathogenesis and the pathogenic potential of a bacterial species is dependent on its genomic complement of virulence factors. A bacterial virulence factor, within the context of this study, is defined as any endogenous protein product encoded by a gene that aids in the adhesion, invasion, colonization, persistence and pathogenesis of a bacterium within a host. Anecdotal evidence suggests that bacterial virulence genes are undergoing diversifying evolution to counteract the rapid adaptability of its host&rsquo
s immune defences. Genome sequences of pathogenic bacterial species and strains provide unique opportunities to study the action of diversifying selection operating on different classes of bacterial genes.
Bücher zum Thema "Gene selection"
Collins, Warwick. A silent gene theory of evolution. Buckingham, UK: University of Buckingham Press, 2009.
Den vollen Inhalt der Quelle findenThe genial gene: Deconstructing Darwinian selfishness. Berkeley: University of California Press, 2009.
Den vollen Inhalt der Quelle findenSilson, Roy G. Additive gene systems: An explanation for problems in evolution and selection. Herts: Greenfield, 1988.
Den vollen Inhalt der Quelle findenUnnatural selection: The promise and the power of human gene research. New York: Bantam Books, 1998.
Den vollen Inhalt der Quelle findenWingerson, Lois. Unnatural selection: The promise and the power of human gene research. New York: Bantam Books, 1999.
Den vollen Inhalt der Quelle findenFoster, Charles A. The selfless gene: Living with God and Darwin. Nashville, Tenn: Thomas Nelson, 2009.
Den vollen Inhalt der Quelle findenFoster, Charles A. The selfless gene: Living with God and Darwin. Nashville, Tenn: Thomas Nelson, 2009.
Den vollen Inhalt der Quelle findenDawkins, Richard. The extended phenotype: The long reach of the gene. Oxford: Oxford University Press, 1989.
Den vollen Inhalt der Quelle findenDawkins, Richard. The Extended Phenotype: The long reach of the gene. Oxford: Oxford University Press, 1999.
Den vollen Inhalt der Quelle findenDawkins, Richard. The Selfish Gene. Oxford: Oxford University Press, 1999.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Gene selection"
Kriegler, Michael. „Selection and Amplification“. In Gene Transfer and Expression, 103–13. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-11891-5_6.
Der volle Inhalt der QuelleGoodnight, Charles J. „Gene Interaction and Selection“. In Plant Breeding Reviews, 269–91. Oxford, UK: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470650240.ch12.
Der volle Inhalt der QuelleRodriguez-Grande, Jorge, und Raul Fernandez-Lopez. „Measuring Plasmid Conjugation Using Antibiotic Selection“. In Horizontal Gene Transfer, 93–98. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-4939-9877-7_6.
Der volle Inhalt der QuelleBradshaw, John E. „Gene Expression and Selection of Major Genes“. In Plant Breeding: Past, Present and Future, 133–59. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23285-0_5.
Der volle Inhalt der QuelleRothenberg, S. Michael, Joan Fisher, David Zapol, David Anderson, Yasumichi Hitoshi, Philip Achacoso und Gany P. Nolan. „Intracellular Combinatorial Chemistry with Peptides in Selection of Caspase-like Inhibitors“. In Gene Therapy, 171–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72160-1_18.
Der volle Inhalt der QuelleHust, Michael, André Frenzel, Thomas Schirrmann und Stefan Dübel. „Selection of Recombinant Antibodies from Antibody Gene Libraries“. In Gene Function Analysis, 305–20. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-721-1_14.
Der volle Inhalt der QuelleHust, Michael, Stefan Dübel und Thomas Schirrmann. „Selection of Recombinant Antibodies From Antibody Gene Libraries“. In Gene Function Analysis, 243–55. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-547-3_14.
Der volle Inhalt der QuelleBorges, Helyane Bronoski, und Julio Cesar Nievola. „Gene Selection from Microarray Data“. In Intelligent Text Categorization and Clustering, 1–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85644-3_1.
Der volle Inhalt der QuelleMirzal, Andri. „SVD Based Gene Selection Algorithm“. In Lecture Notes in Electrical Engineering, 223–30. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4585-18-7_26.
Der volle Inhalt der QuelleHudson, Richard R., und Norman L. Kaplan. „Gene Trees with Background Selection“. In Non-Neutral Evolution, 140–53. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2383-3_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Gene selection"
Aouf, Mohamad, Amr Sharawi, Khaled Samir, Sultan Almotatiri, Abdulla Bajahzar und Ghada Kareem. „Gene Expression Data For Gene Selection Using Ensemble Based Feature Selection“. In 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS). IEEE, 2019. http://dx.doi.org/10.1109/icicis46948.2019.9014722.
Der volle Inhalt der QuelleMarvi-Khorasani, Hanieh, und Hamid Usefi. „Feature Clustering Towards Gene Selection“. In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, 2019. http://dx.doi.org/10.1109/icmla.2019.00240.
Der volle Inhalt der QuelleYildiz, Oktay, Mesut Tez, H. Sakir Bilge, M. Ali Akcayol und Inan Guler. „Gene selection for breast cancer“. In 2012 20th Signal Processing and Communications Applications Conference (SIU). IEEE, 2012. http://dx.doi.org/10.1109/siu.2012.6204693.
Der volle Inhalt der QuelleWang, Fei, und Tao Li. „Gene Selection via Matrix Factorization“. In 2007 IEEE 7th International Symposium on BioInformatics and BioEngineering. IEEE, 2007. http://dx.doi.org/10.1109/bibe.2007.4375686.
Der volle Inhalt der QuelleMitra, P., und D. D. Majumder. „Feature selection and gene clustering from gene expression data“. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, 2004. http://dx.doi.org/10.1109/icpr.2004.1334213.
Der volle Inhalt der QuelleLiu, Quanzhong, Yang Zhang, Yong Wang und Zhengguo Hu. „Study of Informative Gene Selection for Gene Expression Profiles“. In 2009 WRI Global Congress on Intelligent Systems. IEEE, 2009. http://dx.doi.org/10.1109/gcis.2009.94.
Der volle Inhalt der QuelleWang, Shulin, Huowang Chen und Shutao Li. „Gene Selection Using Neighborhood Rough Set from Gene Expression Profiles“. In 2007 International Conference on Computational Intelligence and Security (CIS 2007). IEEE, 2007. http://dx.doi.org/10.1109/cis.2007.169.
Der volle Inhalt der QuelleQi, Jianlong, und Jian Tang. „Gene Ontology Driven Feature Selection from Microarray Gene Expression Data“. In 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology. IEEE, 2006. http://dx.doi.org/10.1109/cibcb.2006.330968.
Der volle Inhalt der QuelleLancucki, Adrian, Indrajit Saha und Piotr Lipinski. „A new evolutionary gene selection technique“. In 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2015. http://dx.doi.org/10.1109/cec.2015.7257080.
Der volle Inhalt der QuelleBanu, P. K. Nizar, und S. Andrews. „Informative Gene Selection - An evolutionary approach“. In 2013 International Conference on Current Trends in Information Technology (CTIT). IEEE, 2013. http://dx.doi.org/10.1109/ctit.2013.6749491.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Gene selection"
Hayward, Simon W. Therapy Selection by Gene Profiling. Fort Belvoir, VA: Defense Technical Information Center, Mai 2008. http://dx.doi.org/10.21236/ada491350.
Der volle Inhalt der QuelleHayward, Simon W. Therapy Selection by Gene Profiling. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada426169.
Der volle Inhalt der QuelleHayward, Simon W. Therapy Selection by Gene Profiling. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada454306.
Der volle Inhalt der QuelleCuriel, David T., Gene Siegal und Minghui Wang. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada485589.
Der volle Inhalt der QuelleCuriel, David T., Gene Siegal und Minghui Wang. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy. Fort Belvoir, VA: Defense Technical Information Center, November 2006. http://dx.doi.org/10.21236/ada472761.
Der volle Inhalt der QuelleSavageau, Michael A. Selection and Computational Potential of Gene Control Elements and Their Circuitry. Fort Belvoir, VA: Defense Technical Information Center, Mai 2001. http://dx.doi.org/10.21236/ada389769.
Der volle Inhalt der QuelleZeng, Jian, Ali Toosi, Rohan L. Fernando, Jack C. M. Dekkers und Dorian J. Garrick. Genomic Selection of Purebred Animals for Crossbred Performance in the Presence of Dominant Gene Action. Ames (Iowa): Iowa State University, Januar 2013. http://dx.doi.org/10.31274/ans_air-180814-1249.
Der volle Inhalt der QuelleYeung, Ka Y., Roger E. Bumgarner und Adrian E. Raftery. Bayesian Model Averaging: Development of an Improved Multi-Class, Gene Selection and Classification Tool for Microarray Data. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2004. http://dx.doi.org/10.21236/ada454826.
Der volle Inhalt der QuelleKufe, Donald W. Gene Therapy of Breast Cancer: Studies of Selective Promoter/Enhancer-Modified Vectors to Deliver Suicide Genes. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada368313.
Der volle Inhalt der QuelleBagamasbad, Pia. Selective Gene Regulation by Androgen Receptor in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2013. http://dx.doi.org/10.21236/ada612316.
Der volle Inhalt der Quelle