Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Gels et hydrogels“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Gels et hydrogels" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Gels et hydrogels"
Chen, Miao, Weimin Lin, Le Hong, Ning Ji und Hang Zhao. „The Development and Lifetime Stability Improvement of Guanosine-Based Supramolecular Hydrogels through Optimized Structure“. BioMed Research International 2019 (13.06.2019): 1–18. http://dx.doi.org/10.1155/2019/6258248.
Der volle Inhalt der QuelleWang, Zi, Xujun Zheng, Tetsu Ouchi, Tatiana B. Kouznetsova, Haley K. Beech, Sarah Av-Ron, Takahiro Matsuda et al. „Toughening hydrogels through force-triggered chemical reactions that lengthen polymer strands“. Science 374, Nr. 6564 (08.10.2021): 193–96. http://dx.doi.org/10.1126/science.abg2689.
Der volle Inhalt der QuelleKim, Junsoo, Guogao Zhang, Meixuanzi Shi und Zhigang Suo. „Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links“. Science 374, Nr. 6564 (08.10.2021): 212–16. http://dx.doi.org/10.1126/science.abg6320.
Der volle Inhalt der QuelleAldakheel, Fahad M., Dalia Mohsen, Marwa M. El Sayed, Mohammed H. Fagir und Dalia K. El Dein. „RETRACTED: Aldakheel et al. Employing of Curcumin–Silver Nanoparticle-Incorporated Sodium Alginate-Co-Acacia Gum Film Hydrogels for Wound Dressing. Gels 2023, 9, 780“. Gels 10, Nr. 6 (05.06.2024): 383. http://dx.doi.org/10.3390/gels10060383.
Der volle Inhalt der QuelleSurowiecka, Agnieszka, Jerzy Strużyna, Aleksandra Winiarska und Tomasz Korzeniowski. „Correction: Surowiecka et al. Hydrogels in Burn Wound Management—A Review. Gels 2022, 8, 122“. Gels 9, Nr. 1 (31.12.2022): 37. http://dx.doi.org/10.3390/gels9010037.
Der volle Inhalt der QuelleSheng, Chengju, Xuemei Tan, Qing Huang, Kewen Li, Chao Zhou und Mingming Guo. „Correction: Sheng et al. Antibacterial and Angiogenic Poly(ionic liquid) Hydrogels. Gels 2022, 8, 476“. Gels 9, Nr. 6 (08.06.2023): 472. http://dx.doi.org/10.3390/gels9060472.
Der volle Inhalt der QuelleJaik, Thorben G., Assegid M. Flatae, Navid Soltani, Philipp Reuschel, Mario Agio, Emiliano Descrovi und Ulrich Jonas. „Correction: Jaik et al. Photomotion of Hydrogels with Covalently Attached Azo Dye Moieties—Thermoresponsive and Non-Thermoresponsive Gels. Gels 2022, 8, 541“. Gels 9, Nr. 5 (15.05.2023): 411. http://dx.doi.org/10.3390/gels9050411.
Der volle Inhalt der QuelleMyers, David R., Ashley C. Brown, Yongzhi Qiu, Yumiko Sakurai, Reginald Tran, Byungwook Ahn, Robert Mannino et al. „High-Throughput Nanomechanical Platelet Contraction Measurements Using Patterned Hydrogels.“ Blood 120, Nr. 21 (16.11.2012): 2172. http://dx.doi.org/10.1182/blood.v120.21.2172.2172.
Der volle Inhalt der QuelleBermudez-Lekerika, Paola, Katherine B. Crump, Karin Wuertz-Kozak, Christine L. Le Maitre und Benjamin Gantenbein. „Correction: Bermudez-Lekerika et al. Sulfated Hydrogels as Primary Intervertebral Disc Cell Culture Systems. Gels 2024, 10, 330“. Gels 10, Nr. 10 (24.09.2024): 612. http://dx.doi.org/10.3390/gels10100612.
Der volle Inhalt der QuelleHorkay, Ferenc, und Jack F. Douglas. „Evidence of Many-Body Interactions in the Virial Coefficients of Polyelectrolyte Gels“. Gels 8, Nr. 2 (04.02.2022): 96. http://dx.doi.org/10.3390/gels8020096.
Der volle Inhalt der QuelleDissertationen zum Thema "Gels et hydrogels"
Roux, Rémi. „Élaboration d'assemblages colloïdaux à partir de nanoparticules de poly(acide lactique) et de chitosane“. Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10088/document.
Der volle Inhalt der QuelleColloidal assemblies may be a promising pathway to obtain injectable scaffolds favoring the development of neo-tissue in regenerative medicine. This work investigates the formation of such assemblies composed of chitosan, soluble or in suspension (nano-hydrogel), and poly(lactic acid) (PLA) nanoparticles. Two types of assemblies are studied. As a first approach, mixing negatively charged PLA particles and chitosan solution leads to the formation of “composite gels”, based on colloidpolymer interactions. Rheological and Small Angle X-Ray Scattering measurements highlighted the formation process and the influence of various parameters on final properties of these gels, which features shear-thinning and reversibility behavior, that is, the capacity to gel again after yielding. PLA nanoparticles could also be mixed with cationic chitosan nanoparticles, which are crosslinker free nano-hydrogels, leading to the formation of “colloidal gels”, based on colloid-colloid interactions. Influence of various parameters on gel synthesis and properties are investigated through rheological measurements. The study also focuses on the characterization and control of the morphological and cohesion properties of chitosan nanogel
Daou, Dania. „Intégration de moteurs moléculaires photoactivables dans des gels supramoléculaires“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAF021.
Der volle Inhalt der QuelleThis thesis explored the integration of light-driven synthetic molecular motors in supramolecular gel networks. The main goal was to achieve reversible macroscopic motion by exploiting both the unidirectional rotation of molecular motors and the reversible nature of supramolecular interactions. Highly functionalized molecular motors have been synthesized and integrated as crosslinking units in supramolecular gel networks of diphenylalanine and poly(γ- benzyl-L-glutamate) peptides, as well as DNA oligonucleotides. Activation of the unidirectional rotation of molecular motors by light, allowed the production of nanomechanical work which is sufficient to disrupt supramolecular interactions in peptide-based gel networks leading to contraction or melting of the gel material at the macroscopic scale. Thanks to the reversible supramolecular interactions, the initial gel material was recovered in the dark, either spontaneously or by applying a thermal stimulus. The systems studied in this thesis represent a novel class of materials operating in dissipative out-of-equilibrium conditions, holding promise of applications in various fields such as biology, medicine and material science
Ribeiro, Cédric. „Assemblages (macro) moléculaires à base de complexe intra et/ou intermoléculaire de CBPQT4+, X-“. Electronic Thesis or Diss., Centrale Lille Institut, 2023. http://www.theses.fr/2023CLIL0018.
Der volle Inhalt der QuelleThe combination of polymer science and supramolecular chemistry has led to thedevelopment of supramolecular polymer materials with unusual structural, mechanical,and functional properties. These materials have already been exploited in manyapplications, including self-repairing materials, tissue engineering, and the controlledrelease of active ingredients. Supramolecular chemistry has proved to be a powerful toolfor modulating the properties of materials by controlling the dynamic nature ofsupramolecular interactions using appropriate stimuli. The work carried out within theframework of this thesis falls within this context, and its main objective was to developnew (macro)molecular assemblies based on intra- and inter-molecular CBPQT4+complexes. To this end, a new CBPQT4+-Fu derivative was developed, integrating a furanunit covalently connected to the CBPQT4+ host moiety. This derivative presents itself inaqueous media a self-included conformation in which the furan unit within the cavityexhibits extremely low reactivity (Diels-Alder) towards dienophiles. However, this can bereleased by adding a guest molecule (naphthalene) with a strong affinity for themacrocycle. This synergy, demonstrated at the molecular scale, enabling the Diels-Alderreaction to be triggered by forming an intramolecular complex, was then exploited to design various physical and chemically cross-linked hydrogels
Hellio, Serughetti Dominique. „Les gels physiques et chimiques de gelatine : structure et rhéologie“. Paris 6, 2004. http://www.theses.fr/2004PA066461.
Der volle Inhalt der QuelleChalal, Mohand. „Structure multi-échelle et propriétés physico-chimiques des gels de polymères thermosensibles“. Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00680076.
Der volle Inhalt der QuelleGasmi, Sarah Nawel. „Action d'une hydrolase dans des hydrogels à base d'alginate et d'alginate fonctionnalisé“. Rouen, 2015. http://www.theses.fr/2015ROUES049.
Der volle Inhalt der QuelleThe aim of this project has been to study the hydrolytic activity of the enzyme, pullulanase, toward its substrate pullulan into functionalized or non-functionalized hydrogels based on calcium alginate. Alginate has been chemically modified with a polyether amine, Jeffamine®, with LCST "Low Critical Solubility Temperature" property. The immobilized enzyme amounted to 30% within calcium alginate beads hydrolyses pullulan slowly owing to its penetration into beads and releases maltotriose and its multiples compared to free enzyme which a large distribution of pullulan fragments is observed during the treatment. The close relationship between enzyme and its substrate into these hydrolgels is only marginally affected by pH. The enzyme is even active at pH 4 contrary to the free enzyme indicating an enzyme protection within these hydrogels. In the case of functionalized alginate, the enzyme immobilisation amount is about 100% because of the preferential interactions between pullulanase and Jeffamines-grafted. The immobilized enzyme does not show a different enzyme activity
Miquelard-Garnier, Guillaume. „Synthèse et propriétés mécaniques d'hydrogels polyélectrolytes modifiés par des groupements hydrophobes“. Paris 6, 2007. https://pastel.archives-ouvertes.fr/tel-00343871.
Der volle Inhalt der QuelleServant, Nathalie. „Mise au point et propriétés rhéologiques d'un hydrogel mucoadhésif à usage ophtalmique en vue de l'amélioration de la biodisponibilité d'un principe actif hydrosoluble“. Montpellier 1, 1996. http://www.theses.fr/1996MON13525.
Der volle Inhalt der QuelleDesprez, Valérie. „Caractérisations, applications et modélisation d'électrodes modifiées par des hydrogels : laponite-oligosilsesquioxanes(-enzyme)“. Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10108.
Der volle Inhalt der QuelleGerard, Eric-Jack. „Synthese, caracterisation et comportement de polyurethannes hydrophiles : etude du mecanisme de la polycondensation reticulante“. Université Louis Pasteur (Strasbourg) (1971-2008), 1988. http://www.theses.fr/1988STR13192.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Gels et hydrogels"
Chippada, Uday, Xue Jiang, Michelle Previtera, Rene Schloss, Bernard Yurke, Bonnie L. Firestein und Noshir A. Langrana. „Alteration of Fibroblast Cell Behavior due to Contraction of Substrate“. In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19507.
Der volle Inhalt der QuelleLi, Bojun, und Erdong Yao. „High-Temperature Resistant, Low-Concentration Polyacrylamide Gel System“. In 56th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2022. http://dx.doi.org/10.56952/arma-2022-2042.
Der volle Inhalt der QuelleHorikoshi, Satoshi. „IN-LIQUID PLASMA USING MICROWAVE POWER FOR APPLICATIONS“. In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9815.
Der volle Inhalt der QuelleChippada, Uday, Bernard Yurke, David I. Shreiber, Rene Schloss, Xue Jiang, Lulu Li und Noshir A. Langrana. „Force/Torque Field Generation to Obtain Local Properties within Soft Hydrogels“. In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176081.
Der volle Inhalt der QuelleSuciu, Claudiu Valentin. „Thermal Effects on Nano-Energy Absorption Systems (Nano-EAS)“. In 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2008. http://dx.doi.org/10.1115/micronano2008-70039.
Der volle Inhalt der QuelleWunch, Kenneth, und Veronica Silva. „Protecting the Reservoir from Diminishing Productivity Caused by Downhole Biofilm Growth in Shale Plays“. In SPE International Conference on Oilfield Chemistry. SPE, 2023. http://dx.doi.org/10.2118/213852-ms.
Der volle Inhalt der Quelle