Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Gels and Hydrogels“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Gels and Hydrogels" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Gels and Hydrogels"
Xu, Bo, Yuwei Liu, Lanlan Wang, Xiaodong Ge, Min Fu, Ping Wang und Qiang Wang. „High-Strength Nanocomposite Hydrogels with Swelling-Resistant and Anti-Dehydration Properties“. Polymers 10, Nr. 9 (14.09.2018): 1025. http://dx.doi.org/10.3390/polym10091025.
Der volle Inhalt der QuelleBurchak, Vadym, Fritz Koch, Leonard Siebler, Sonja Haase, Verena K. Horner, Xenia Kempter, G. Björn Stark et al. „Evaluation of a Novel Thiol–Norbornene-Functionalized Gelatin Hydrogel for Bioprinting of Mesenchymal Stem Cells“. International Journal of Molecular Sciences 23, Nr. 14 (19.07.2022): 7939. http://dx.doi.org/10.3390/ijms23147939.
Der volle Inhalt der QuelleNaficy, Sina, Hugh R. Brown, Joselito M. Razal, Geoffrey M. Spinks und Philip G. Whitten. „Progress Toward Robust Polymer Hydrogels“. Australian Journal of Chemistry 64, Nr. 8 (2011): 1007. http://dx.doi.org/10.1071/ch11156.
Der volle Inhalt der QuelleBhuyan, Md Murshed, und Jae-Ho Jeong. „Gels/Hydrogels in Different Devices/Instruments—A Review“. Gels 10, Nr. 9 (23.08.2024): 548. http://dx.doi.org/10.3390/gels10090548.
Der volle Inhalt der QuelleShoukat, Hina, Fahad Pervaiz und Sobia Noreen. „Novel Crosslinking Methods to Design Hydrogels“. Global Pharmaceutical Sciences Review I, Nr. I (30.12.2016): 1–5. http://dx.doi.org/10.31703/gpsr.2016(i-i).01.
Der volle Inhalt der QuelleLi, Peng, Nam Hoon Kim, Sambhu Bhadra und Joong Hee Lee. „Electroresponsive Property of Novel Poly(acrylate- acryloyloxyethyl trimethyl ammonium chloride)/Clay Nanocomposite Hydrogels“. Advanced Materials Research 79-82 (August 2009): 2263–66. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.2263.
Der volle Inhalt der QuelleGorantla, Srividya, Tejashree Waghule, Vamshi Krishna Rapalli, Prem Prakash Singh, Sunil Kumar Dubey, Ranendra Narayan Saha und Gautam Singhvi. „Advanced Hydrogels Based Drug Delivery Systems for Ophthalmic Delivery“. Recent Patents on Drug Delivery & Formulation 13, Nr. 4 (29.04.2020): 291–300. http://dx.doi.org/10.2174/1872211314666200108094851.
Der volle Inhalt der QuelleO’Connor, Naphtali A., Abdulhaq Syed, Madeline Wong, Josiah Hicks, Greisly Nunez, Andrei Jitianu, Zach Siler und Marnie Peterson. „Polydopamine Antioxidant Hydrogels for Wound Healing Applications“. Gels 6, Nr. 4 (31.10.2020): 39. http://dx.doi.org/10.3390/gels6040039.
Der volle Inhalt der QuelleFallon, Halligan, Pezzoli, Geever und Higginbotham. „Synthesis and Characterisation of Novel Temperature and pH Sensitive Physically Cross-Linked Poly (N-vinylcaprolactam-co-itaconic Acid) Hydrogels for Drug Delivery“. Gels 5, Nr. 3 (29.08.2019): 41. http://dx.doi.org/10.3390/gels5030041.
Der volle Inhalt der QuelleSeida, Yoshimi, und Hideaki Tokuyama. „Hydrogel Adsorbents for the Removal of Hazardous Pollutants—Requirements and Available Functions as Adsorbent“. Gels 8, Nr. 4 (03.04.2022): 220. http://dx.doi.org/10.3390/gels8040220.
Der volle Inhalt der QuelleDissertationen zum Thema "Gels and Hydrogels"
Vaculíková, Hana. „Hyaluronan hydrogels“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2019. http://www.nusl.cz/ntk/nusl-401877.
Der volle Inhalt der QuelleShukla, Pranav. „Inducing Liquid Evaporation with Hygroscopic Gels“. Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/101555.
Der volle Inhalt der QuelleMaster of Science
Park, Tae Gwan. „Immobilized biocatalysts in stimuli-sensitive hydrogels /“. Thesis, Connect to this title online; UW restricted, 1990. http://hdl.handle.net/1773/8070.
Der volle Inhalt der QuelleRehab, M. M. A. M. „Preparation and characterization of copolymeric hydrogels“. Thesis, University of Salford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381697.
Der volle Inhalt der QuelleGräfe, David. „Tetra-Responsive Grafted Hydrogels for Flow Control in Microfluidics“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-219926.
Der volle Inhalt der QuelleSingh, Nishant. „Functional gels as microreactors“. Doctoral thesis, Universitat Jaume I, 2016. http://hdl.handle.net/10803/397698.
Der volle Inhalt der QuelleHidrogelantes funcionalizados sobre autoensamblaje pueden demostrar como la catálisis enzimática mejorada basada en varios factores tales como bolsillos hidrofóbicos, cambio en pH, cambio en pKa, aumento en la concentración local de los sitios activos etc. Aquí presentamos tales tipos de hidrogelantes que son capaces de demostrar varios tipos de reacciones importantes como aldolica, Mannicli, hidrolisis, deactetalisation, etc.
Mujeeb, Ayeesha. „Self-assembled octapeptide gels for cartilage repair“. Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/selfassembled-octapeptide-gels-for-cartilage-repair(ce161da3-4ce4-4d42-b0cc-6933fc6aa394).html.
Der volle Inhalt der QuelleBuerkle, Lauren Elizabeth. „Tailoring the Properties of Supramolecular Gels“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1317946752.
Der volle Inhalt der QuelleGruberová, Eliška. „Gelace hydrofobizovaného hyaluronanu“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-449414.
Der volle Inhalt der QuelleLe, blay Heiva. „Use of shear wave imaging to assess the mechanical and fracture behaviors of tough model gels“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS096.
Der volle Inhalt der QuelleA hydrogel is a soft material, largely swollen with water, made elastic via a network of polymer chains. A gel is inherently fragile. This brittleness can be overcome by adding dynamic sacrificial bonds. Macromolecular engineering of the 21st century has made possible the formulation of gels for use in biology in order to provide synthetic materials while addressing biocompatibility issues, tissue/material interface compatibility, and mechanical properties that the body requires. However, the fracture of these highly deformable and sometimes viscoelastic materials remains a poorly understood subject that has been little investigated experimentally. The challenge today is to better understand the mechanisms involved at the crack tip but the experimental techniques that allow a local approach and with fast acquisition rates are limited. Our work aims at developing an innovative method to probe the fracture of gels. Water being their main component, these materials, like biological tissues, are an excellent platform to study the propagation of acoustic waves, i.e. shear (S) or compression (P) waves. In materials composed mainly of water, compressional waves, typically ultrasound, propagate at about 1500 m/s (P-wave velocity in water) while shear waves are of the order of m/s (between about 1-8 m/s) and their velocity increases with the rigidity of the material. It is therefore possible to see the S waves propagating through the difference in speed between these two waves. This is the principle of shear wave elastography, an imaging technique used in this study to understand the mechanics and fracture of hydrogels.The gel fracture was studied locally at the crack tip in a quasi-static way. Then, the physical phenomena involved during crack propagation were investigated using ultrafast imaging.It is important to understand how the fracture propagates and if it is possible to avoid or stop it. The goal of any material is to avoid breaking and therefore to resist fracture propagation
Bücher zum Thema "Gels and Hydrogels"
Park, Kinam. Biodegradable hydrogels for drug delivery. Lancaster, PA: Technomic Pub., 1993.
Den vollen Inhalt der Quelle findenM, Ottenbrite Raphael, Huang Samuel J. 1937-, Park Kinam, American Chemical Society Meeting und American Chemical Society. Division of Polymer Chemistry. (Washington, D.C.), Hrsg. Hydrogels and biodegradable polymers for bioapplications. Washington, D.C: American Chemical Society, 1996.
Den vollen Inhalt der Quelle findenScott, Adams, Palaszewski Bryan und United States. National Aeronautics and Space Administration., Hrsg. Nanoparticulate gellants for metallized gelled liquid hydrogen wth aluminum. [Washington, DC]: National Aeronautics and Space Administration, 1996.
Den vollen Inhalt der Quelle findenB, Sunkara H., und United States. National Aeronautics and Space Administration., Hrsg. Design of intelligent mesoscale periodic array structures utilizing smart hydrogel. [Washington, D.C: National Aeronautics and Space Administration, 1996.
Den vollen Inhalt der Quelle findenHydrogels in medicine and pharmacy. Boca Raton, Fla: CRC Press, 1986.
Den vollen Inhalt der Quelle findenPeppas, Nikolaos. Hydrogels in Medicine and Pharmacy: Fundamentals. CRC Press, 1987.
Den vollen Inhalt der Quelle findenPark, Kinam, Haesun Park und Waleed S. W. Shalaby. Biodegradable Hydrogels for Drug Delivery. Taylor & Francis Group, 1993.
Den vollen Inhalt der Quelle findenPark, Kinam, Haesun Park und Waleed S. W. Shalaby. Biodegradable Hydrogels for Drug Delivery. Taylor & Francis Group, 1993.
Den vollen Inhalt der Quelle findenPark, Kinam, Haesun Park und Waleed S. W. Shalaby. Biodegradable Hydrogels for Drug Delivery. Taylor & Francis Group, 1993.
Den vollen Inhalt der Quelle findenGels Handbook : Fundamentals, Properties and ApplicationsVolume 1 : Fundamentals of Hydrogelsvolume 2 : Applications of Hydrogels in Regenerative Medicinevolume 3: Application of Hydrogels in Drug Delivery and Biosensing. World Scientific Publishing Co Pte Ltd, 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Gels and Hydrogels"
Brøndsted, Helle, und Jindřich Kopeček. „pH-Sensitive Hydrogels“. In Polyelectrolyte Gels, 285–304. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0480.ch017.
Der volle Inhalt der QuelleKong, Weiqing, Qingqing Dai, Cundian Gao, Junli Ren, Chuanfu Liu und Runcang Sun. „Hemicellulose-Based Hydrogels and Their Potential Application“. In Polymer Gels, 87–127. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6086-1_3.
Der volle Inhalt der QuelleOsada, Yoshihito, Ryuzo Kawamura und Ken-Ichi Sano. „Biomimetic Functions of Synthetic Polymer Gels“. In Hydrogels of Cytoskeletal Proteins, 73–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27377-8_7.
Der volle Inhalt der QuelleGitsov, Ivan, Thomas Lys und Chao Zhu. „Amphiphilic Hydrogels with Highly Ordered Hydrophobic Dendritic Domains“. In Polymer Gels, 218–32. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0833.ch015.
Der volle Inhalt der QuelleDualeh, Abdulkadir J., und Carol A. Steiner. „Structure and Properties of Surfactant-Bridged Viscoelastic Hydrogels“. In Polyelectrolyte Gels, 42–52. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0480.ch003.
Der volle Inhalt der QuelleOppermann, W. „Swelling Behavior and Elastic Properties of Ionic Hydrogels“. In Polyelectrolyte Gels, 159–70. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0480.ch010.
Der volle Inhalt der QuelleDong, Liang Chang, und Allan S. Hoffman. „Thermally Reversible Hydrogels“. In Reversible Polymeric Gels and Related Systems, 236–44. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0350.ch016.
Der volle Inhalt der QuelleChau, Mokit, Shivanthi Easwari Sriskandha, Héloïse Thérien-Aubin und Eugenia Kumacheva. „Supramolecular Nanofibrillar Polymer Hydrogels“. In Supramolecular Polymer Networks and Gels, 167–208. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15404-6_5.
Der volle Inhalt der QuelleAllcock, Harry R., und Archel Ambrosio. „Synthesis and Characterization of pH-Responsive Poly(organophosphazene) Hydrogels“. In Polymer Gels, 82–101. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0833.ch006.
Der volle Inhalt der QuellePape, A. C. H., und Patricia Y. W. Dankers. „Supramolecular Hydrogels for Regenerative Medicine“. In Supramolecular Polymer Networks and Gels, 253–79. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15404-6_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Gels and Hydrogels"
Morovati, Vahid, Mohammad Ali Saadat und Roozbeh Dargazany. „Modelling Stress Softening and Necking Phenomena in Double Network Hydrogels“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-12253.
Der volle Inhalt der QuelleGeisler, Chris G., Ho-Lung Li, David M. Wootton, Peter I. Lelkes und Jack G. Zhou. „Soft Biomaterial Study for 3-D Tissue Scaffold Printing“. In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34274.
Der volle Inhalt der QuelleVicente, Adam, Zachary McCreery und Karen Chang Yan. „Printability of Hydrogels for Hydrogel Molding Based Microfluidic Device Fabrication“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11545.
Der volle Inhalt der QuelleHaraguchi, Kazutoshi, und Toru Takehisa. „Novel Manufacturing Process of Nanocomposite Hydrogel For Bio-Applications“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80533.
Der volle Inhalt der QuelleMorovati, Vahid, und Roozbeh Dargazany. „Micro-Mechanical Modeling of the Stress Softening in Double-Network Hydrogels“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88252.
Der volle Inhalt der QuelleThien, Austen, und Kishore Pochiraju. „Additive Manufacturing Techniques for Soft Electroactive Polymer Hydrogels Using a Customized 3D Printer“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72007.
Der volle Inhalt der QuelleMarks, William H., Sze C. Yang, George W. Dombi und Sujata K. Bhatia. „Carbon Nanobrushes Embedded Within Hydrogel Composites for Tissue Engineering“. In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93122.
Der volle Inhalt der QuelleYao, Hai, und Weiyong Gu. „New Insight Into Deformation-Dependent Hydraulic Permeability of Hydrogels and Cartilage“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32520.
Der volle Inhalt der QuelleDrzewiecki, Kathryn, Ian Gaudet, Douglas Pike, Jonathan Branch, Vikas Nanda und David Shreiber. „Temperature Dependent Reversible Self Assembly of Methacrylated Collagen Gels“. In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14705.
Der volle Inhalt der QuelleEarnshaw, Audrey L., Justine J. Roberts, Garret D. Nicodemus, Stephanie J. Bryant und Virginia L. Ferguson. „The Mechanical Behavior of Engineered Hydrogels“. In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206705.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Gels and Hydrogels"
Benicewicz, Brian C., Glenn A. Eisman, S. K. Kumar und S. G. Greenbaum. Sol-Gel Based Polybenzimidazole Membranes for Hydrogen Pumping Devices. Office of Scientific and Technical Information (OSTI), Februar 2014. http://dx.doi.org/10.2172/1121336.
Der volle Inhalt der Quelle