Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Gellan gum“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Gellan gum" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Gellan gum"
Giavasis, Ioannis, Linda M. Harvey und Brian McNeil. „Gellan Gum“. Critical Reviews in Biotechnology 20, Nr. 3 (Januar 2000): 177–211. http://dx.doi.org/10.1080/07388550008984169.
Der volle Inhalt der QuelleTran, Thi Phuong An, Hoon Cho, Gye-Chun Cho, Jong-In Han und Ilhan Chang. „Nickel (Ni2+) Removal from Water Using Gellan Gum–Sand Mixture as a Filter Material“. Applied Sciences 11, Nr. 17 (26.08.2021): 7884. http://dx.doi.org/10.3390/app11177884.
Der volle Inhalt der QuelleSukumar, Soumiya, Santhiagu Arockiasamy und Moothona Manjusha Chemmattu. „Gellan gum biopolymer- A review“. Research Journal of Chemistry and Environment 25, Nr. 10 (25.09.2021): 150–57. http://dx.doi.org/10.25303/2510rjce150157.
Der volle Inhalt der QuelleSun, Ling, Yazhen Wang, Meixiang Yue, Xialiang Ding, Xiangyang Yu, Jing Ge, Wenjing Sun und Lixiao Song. „Rapid Screening of High-Yield Gellan Gum Mutants of Sphingomonas paucimobilis ATCC 31461 by Combining Atmospheric and Room Temperature Plasma Mutation with Near-Infrared Spectroscopy Monitoring“. Foods 11, Nr. 24 (16.12.2022): 4078. http://dx.doi.org/10.3390/foods11244078.
Der volle Inhalt der QuelleWang, Xia, Ping Xu, Yong Yuan, Changlong Liu, Dezhong Zhang, Zhengting Yang, Chunyu Yang und Cuiqing Ma. „Modeling for Gellan Gum Production by Sphingomonas paucimobilis ATCC 31461 in a Simplified Medium“. Applied and Environmental Microbiology 72, Nr. 5 (Mai 2006): 3367–74. http://dx.doi.org/10.1128/aem.72.5.3367-3374.2006.
Der volle Inhalt der QuelleHara, Shintaro, Yasuyuki Hashidoko, Roman V. Desyatkin, Ryusuke Hatano und Satoshi Tahara. „High Rate of N2 Fixation by East Siberian Cryophilic Soil Bacteria as Determined by Measuring Acetylene Reduction in Nitrogen-Poor Medium Solidified with Gellan Gum“. Applied and Environmental Microbiology 75, Nr. 9 (13.03.2009): 2811–19. http://dx.doi.org/10.1128/aem.02660-08.
Der volle Inhalt der QuelleSworn, G., G. R. Sanderson und W. Gibson. „Gellan gum fluid gels“. Food Hydrocolloids 9, Nr. 4 (Dezember 1995): 265–71. http://dx.doi.org/10.1016/s0268-005x(09)80257-9.
Der volle Inhalt der QuelleGrasdalen, Hans, und Olav Smidsrød. „Gelation of gellan gum“. Carbohydrate Polymers 7, Nr. 5 (Januar 1987): 371–93. http://dx.doi.org/10.1016/0144-8617(87)90004-x.
Der volle Inhalt der QuelleHilal, Adonis, Anna Florowska, Tomasz Florowski und Małgorzata Wroniak. „A Comparative Evaluation of the Structural and Biomechanical Properties of Food-Grade Biopolymers as Potential Hydrogel Building Blocks“. Biomedicines 10, Nr. 9 (28.08.2022): 2106. http://dx.doi.org/10.3390/biomedicines10092106.
Der volle Inhalt der QuelleYamada, Masanori, und Yoshihiro Kametani. „Preparation of Gellan Gum-Inorganic Composite Film and Its Metal Ion Accumulation Property“. Journal of Composites Science 6, Nr. 2 (25.01.2022): 42. http://dx.doi.org/10.3390/jcs6020042.
Der volle Inhalt der QuelleDissertationen zum Thema "Gellan gum"
McGovern-Traa, Caroline. „Studies on gellan gum“. Thesis, University of Edinburgh, 1994. http://hdl.handle.net/1842/15337.
Der volle Inhalt der QuelleGothard, Michelle Gina Elizabeth. „Functional properties of gellan gum“. Thesis, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426116.
Der volle Inhalt der QuelleCassanelli, Mattia. „Drying and rehydration of gellan gum gels“. Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8810/.
Der volle Inhalt der QuelleDhameri, Sulaiman Ali A. „Rheological Properties and Decomposition Rates of Gellan Gum“. University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1562780919692096.
Der volle Inhalt der QuelleYang, Li. „Physicochemical properties of biodegradable/edible films made with gellan gum“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0026/MQ31662.pdf.
Der volle Inhalt der QuelleTsiami, Amalia A. „Physiochemical properties of Gellan gum in gel and solution state“. Thesis, University of East Anglia, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358455.
Der volle Inhalt der QuelleGiavasis, Ioannis. „Physiological studies on the production of gellan gum by Sphingomonas paucimobilis“. Thesis, University of Strathclyde, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273429.
Der volle Inhalt der QuelleBaawad, Abdullah. „Release of Low Acyl Gellan Gum in a Controlled Release System“. University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1544823979777171.
Der volle Inhalt der QuelleMahdi, Mohammed Hamzah. „Development of gellan gum fluid gel as modified release drug delivery systems“. Thesis, University of Huddersfield, 2016. http://eprints.hud.ac.uk/id/eprint/30293/.
Der volle Inhalt der QuellePicone, Carolina Siqueira Franco 1983. „Formação de nanopartículas por associação de biopolímeros e surfactantes = Formation of nanoparticles by biopolymer - surfactant association“. [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/254194.
Der volle Inhalt der QuelleTexto em português e inglês
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-20T12:57:32Z (GMT). No. of bitstreams: 1 Picone_CarolinaSiqueiraFranco_D.pdf: 4074904 bytes, checksum: 1a2779daa118fabb35ba241a8f6bf16f (MD5) Previous issue date: 2012
Resumo: As nano partículas possuem grande potencial para a liberação controlada de bioativos, porém ainda são pouco exploradas na área de alimentos. Neste trabalho foi estudada a formação de nanopartículas a partir da autoagregação de surfactantes, associação surfactante-polissacarídeo e complexação eletrostática entre diferentes polissacarídeos, no caso, quitosana e gelana. A compreensão das interações moleculares responsáveis pela formação das partículas e o conhecimento das variáveis que afetam sua formação permitem predizer e controlar suas propriedades. Tais interações dependem fortemente das características de cada macromolécula, como flexibilidade, estado conformacional e densidade de cargas que são diretamente afetadas pelas condições físico-químicas do meio como pH, força iônica e temperatura. Por isso, este trabalho foi dividido em três etapas. (I) Inicialmente foi avaliado o comportamento em solução dos polissacarídeos utilizados posteriormente para a formação de complexos. Os efeitos do pH e da temperatura nas características reológicas e no estado conformacional de soluções puras de gelana e quitosana foram estudados. A agregação da gelana foi mais sensível às alterações do meio que a quitosana. (II) Na segunda etapa, nanopartículas foram formadas por autoassociação de polissorbatos na presença de quitosana. A influência do comprimento da cauda hidrofóbica do surfactante e do pH do meio nas propriedades das partículas foi estudada por espalhamento de luz, reologia, condutivimetria e microscopia de luz polarizada. O tamanho e estrutura das partículas formadas pelo surfactante de menor cadeia hidrofóbica foram mais favoráveis à associação com a quitosana. O pH do meio (3,0 ou 6,7) não influenciou de maneira significativa as características das partículas. O efeito da concentração de quitosana na estrutura e tamanho de partículas foi analisado. Maiores concentrações levaram a viscosidades mais elevadas, impedindo a agregação das micelas e formando partículas menores. (III) No terceiro estudo, nanopartículas foram obtidas pela complexação eletrostática de gelana e quitosana. Os efeitos da razão de concentração de cada polissacarídeo, do tempo de estocagem a 25 °C e da presença de um surfactante nãoiônico (polissorbato) no tamanho, carga e quantidade de partículas formadas foram avaliados. Devido à menor densidade de carga e flexibilidade da gelana, maior quantidade deste polissacarídeo foi necessária para obtenção de partículas neutras. De forma geral, as partículas apresentaram aumento de tamanho ao longo das primeiras 100 horas após o preparo e não foram observadas mudanças significativas das propriedades das partículas devido à adição de surfactante. O método de preparo das amostras também foi estudado. Partículas preparadas pela mistura das soluções de polissacarídeos em dois passos foram consideravelmente maiores que as preparadas pela mistura em uma única etapa. Este trabalho confirmou a possibilidade de formação de nanopartículas promissoras para a encapsulação de bioativos em alimentos a partir da associação de biopolímeros e surfactantes, cujas propriedades poderiam ser moduladas em função da composição e condições de processo
Abstract: Nanoparticles are promising vehicles for bioactive delivery, but their potential has not been fully explored by the food industry. This work studied the formation of nanoparticles by self-assembly of surfactants, polysaccharide-surfactant association, and electrostatic complexes formed by different polysaccharides, especially chitosan and gellan gum. The knowledge of molecular interactions and the variables that affect particle formation allows predicting and controlling the properties of nanoparticles. These interactions depend on the characteristics of each macromolecule such as conformation, charge density and flexibility, which are affected by the physicol-chemical properties of the solution, such as pH, ionic strength and temperature. This work was divided in three parts: (I) Firstly it was studied the behaviour of each polysaccharide alone. The influence of the pH and temperature on the rheological properties and structural conformation of the pure gellan and chitosan samples was determined. Gellan aggregation was more strongly affected by such variables than chitosan. (II) In the second part, nanoparticles were obtained by polysorbate-chitosan association. The effect of the length of surfactant tail and the solution pH on the particle properties was studied by dynamic light scattering, rheological and conductivity measurements and polarizing microscopy. The size and structure of nanoparticles composed by the shorter surfactant were more appropriated to chitosan assembly. The pH (6.7 or 3.0) did not affect significantly the particle properties. The effects of chitosan concentration on particle structure and size were studied. Greater chitosan concentration led to smaller particles due to the increase in viscosity values which prevented micelles aggregation. (III) In the third study nanoparticles were produced by electrostatic complexation of chitosan and gellan gum. Particle size, charge density, stability and complexes number were evaluated as a function of polysaccharide concentration, chitosan:gellan ratio and the presence of a non-ionic surfactant. Due to the stiffness and low charge density of gellan gum, a greater amount of such polysaccharide was necessary to obtain neutral particles. Overall particles showed an increase in size during 100 hours of storage at 25 °C, but no significant changes on particle properties were observed due to surfactant addition. The methodology of particle preparation was also evaluated. Particles prepared by 2 mixing steps were markedly larger than those prepared by mixing polysaccharides in a single step (all together). This work showed that it is possible to produce nanoparticles with promising application on bioactive delivery by biopolymer-surfactant association, since their properties could be modulated as a function of composition and process conditions
Doutorado
Engenharia de Alimentos
Doutor em Engenharia de Alimentos
Bücher zum Thema "Gellan gum"
Nishinari, K., Hrsg. Physical Chemistry and Industrial Application of Gellan Gum. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48349-7.
Der volle Inhalt der QuelleTsiami, Amalia A. Physiochemical properties of gellan gum in gel and solution state. Norwich: University of East Anglia, 1994.
Den vollen Inhalt der Quelle findenCe lue gui hua jia : Zhu Geliang da zhuang. Taibei Shi: Yuan liu chu ban shi ye gu fen you xian gong si, 1992.
Den vollen Inhalt der Quelle findenIndonesia) Festival Legu Gam Moloku Kie Raha (2011 Ternate. Geliat Legu gam Moloku kie raha: Pesona kie raha, pesona Nusantara. Ternate Tengah]: Dewan Pakar Kesultanan Ternate, 2011.
Den vollen Inhalt der Quelle findenBergmann, Jörg R., und Christian Meyer, Hrsg. Ethnomethodologie reloaded. Bielefeld, Germany: transcript Verlag, 2021. http://dx.doi.org/10.14361/9783839454381.
Der volle Inhalt der Quelle(Firm), NutraSweet Kelco, und Monsanto, Hrsg. Alginates, xanthan gum & gellan gum seminar. Tadworth, Surrey: NutraSweet Kelco and Monsanto, 1998.
Den vollen Inhalt der Quelle findenNayak, Amit Kumar, und Saquib Hasnain. Gellan Gum As a Biomedical Polymer. Elsevier Science & Technology Books, 2022.
Den vollen Inhalt der Quelle findenGellan Gum As a Biomedical Polymer. Elsevier Science & Technology, 2023.
Den vollen Inhalt der Quelle findenNishinari, K. Physical Chemistry and Industrial Application of Gellan Gum. Springer, 2013.
Den vollen Inhalt der Quelle findenNishinari, K. Physical Chemistry and Industrial Application of Gellan Gum. Springer London, Limited, 2003.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Gellan gum"
Nussinovitch, A. „Gellan gum“. In Hydrocolloid Applications, 63–82. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6385-3_4.
Der volle Inhalt der QuelleGibson, W. „Gellan gum“. In Thickening and Gelling Agents for Food, 227–49. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3552-2_10.
Der volle Inhalt der QuelleGibson, W., und G. R. Sanderson. „Gellan gum“. In Thickening and Gelling Agents for Food, 119–43. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-2197-6_6.
Der volle Inhalt der QuelleSanderson, G. R. „Gellan Gum“. In Food Gels, 201–32. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0755-3_6.
Der volle Inhalt der QuelleBährle-Rapp, Marina. „Gellan Gum“. In Springer Lexikon Kosmetik und Körperpflege, 219. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_4207.
Der volle Inhalt der QuelleMonferrer, Albert, Claudia Cortés, Núria Cubero und Laura Gómez. „E-418 Gellan Gum“. In Hydrocolloids in food product development, 105–11. Boca Raton, FL : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9781003019862-12.
Der volle Inhalt der QuelleSanderson, George R., und David Ortega. „Alginates and Gellan Gum: Complementary Gelling Agents“. In Food Hydrocolloids, 83–89. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2486-1_8.
Der volle Inhalt der QuellePanda, Pritish Kumar, Amit Verma, Shivani Saraf, Ankita Tiwari und Sanjay K. Jain. „Ionically Gelled Gellan Gum in Drug Delivery“. In Ionically Gelled Biopolysaccharide Based Systems in Drug Delivery, 55–69. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2271-7_3.
Der volle Inhalt der QuelleNagpal, Shakti, Sunil Kumar Dubey, Vamshi Krishna Rapalli und Gautam Singhvi. „Pharmaceutical Applications of Gellan Gum“. In Natural Polymers for Pharmaceutical Applications, 87–109. Includes bibliographical references and indexes.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429328299-4.
Der volle Inhalt der QuelleVendrusculo, Claire T., José L. Pereira und Adilma R. P. Scamparini. „Gellan Gum: Production And Properties“. In Food Hydrocolloids, 91–95. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2486-1_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Gellan gum"
Ya´n˜ez-Ferna´ndez, J., J. A. Salazar-Montoya und E. G. Ramos-Rami´rez. „Effect of Mesquite Seed Gum on the Rheological Properties of Mixtures With Arabic and Gellan Gums“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32195.
Der volle Inhalt der QuelleYu, Ilhan, Roland Chen und Samantha Grindrod. „Fabrication of Gellan Gum Tubular Structure Using Coaxial Needles: A Study on Wall Thickness and Encapsulation“. In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6614.
Der volle Inhalt der QuelleTorres, Francisco R., Pedro H. L. Sanches, Hernane S. Barud und José Maurício A. Caiut. „Biocomposites of Eu3+-doped gellan gum and nanocellulose for 3D printing“. In Latin America Optics and Photonics Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.w1a.2.
Der volle Inhalt der QuelleFerris, C. J., und M. in het Panhuis. „Diffusion of vitamin B12 in gellan gum-carbon nanotube hydrogels“. In 2010 International Conference on Nanoscience and Nanotechnology (ICONN). IEEE, 2010. http://dx.doi.org/10.1109/iconn.2010.6045180.
Der volle Inhalt der QuelleModrogan, Cristina. „REMOVAL OF MANGANESE FROM GROUNDWATER BY ADSORPTION ON GELLAN GUM/Fe3O4 COMPOSITE“. In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/5.1/s20.091.
Der volle Inhalt der QuelleReichel, Eric, Christopher M. Salinas, Clara Curiel-Lewandrowski und Russell S. Witte. „Transparent Gellan Gum as an Efficient Coupling Media For Photoacoustic Imaging Applications“. In 2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022. http://dx.doi.org/10.1109/ius54386.2022.9958558.
Der volle Inhalt der QuelleK., Mithra, Santripti Khandai und Sidhartha S. Jena. „Effect of sodium dodecyl sulfate surfactant on rheological properties of gellan gum hydrogels“. In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980230.
Der volle Inhalt der QuelleLoureiro, Jorge, Sonia P. Miguel, Victor P. Galvan-Chacon, David Patrocinio, Francisco M. Sanchez-Margallo, J. Blas Pagador, Maximiano P. Ribeiro und Paula Coutinho. „Swelling Analysis of Thermal and Chemical Crosslinked Konjac Glucomannan/Gellan Gum Cardiac Patch“. In 2021 International Conference on e-Health and Bioengineering (EHB). IEEE, 2021. http://dx.doi.org/10.1109/ehb52898.2021.9657686.
Der volle Inhalt der QuelleCortela, G., K. M. Lima, L. E. Maggi, C. Negreira und W. C. A. Pereira. „Evaluation of acoustic and thermal properties of gellan-gum phantom to mimic biological tissue“. In 2015 Pan American Health Care Exchanges (PAHCE). IEEE, 2015. http://dx.doi.org/10.1109/pahce.2015.7173326.
Der volle Inhalt der QuelleMuktar, Muhammad Zulhelmi, Laili bt Che Rose und Khairul Anuar Mat Amin. „Formulation and optimization of virgin coconut oil with Tween-80 incorporated in gellan gum hydrogel“. In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002238.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Gellan gum"
Kuhnt, Matthias, Tilman Reitz und Patrick Wöhrle. Arbeiten unter dem Wissenschaftszeitvertragsgesetz : Eine Evaluation von Befristungsrecht und -realität an deutschen Universitäten. Technische Universität Dresden, 2022. http://dx.doi.org/10.25368/2022.132.
Der volle Inhalt der QuelleKuhnt, Mathias, Tilman Reitz und Patrick Wöhrle. Arbeiten unter dem Wissenschaftszeitvertragsgesetz : Eine Evaluation von Befristungsrecht und -realität an deutschen Universitäten. Technische Universität Dresden, 2022. http://dx.doi.org/10.25368/2022.366.
Der volle Inhalt der Quelle