Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Gaussian splatting“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Gaussian splatting" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Gaussian splatting"
Radl, Lukas, Michael Steiner, Mathias Parger, Alexander Weinrauch, Bernhard Kerbl und Markus Steinberger. „StopThePop: Sorted Gaussian Splatting for View-Consistent Real-time Rendering“. ACM Transactions on Graphics 43, Nr. 4 (19.07.2024): 1–17. http://dx.doi.org/10.1145/3658187.
Der volle Inhalt der QuelleSMIRNOV, A. O. „Camera Pose Estimation Using a 3D Gaussian Splatting Radiance Field“. Kibernetika i vyčislitelʹnaâ tehnika 216, Nr. 2(216) (26.06.2024): 15–25. http://dx.doi.org/10.15407/kvt216.02.015.
Der volle Inhalt der QuelleGao, Lin, Jie Yang, Bo-Tao Zhang, Jia-Mu Sun, Yu-Jie Yuan, Hongbo Fu und Yu-Kun Lai. „Real-time Large-scale Deformation of Gaussian Splatting“. ACM Transactions on Graphics 43, Nr. 6 (19.11.2024): 1–17. http://dx.doi.org/10.1145/3687756.
Der volle Inhalt der QuelleJäger, Miriam, Theodor Kapler, Michael Feßenbecker, Felix Birkelbach, Markus Hillemann und Boris Jutzi. „HoloGS: Instant Depth-based 3D Gaussian Splatting with Microsoft HoloLens 2“. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-2-2024 (11.06.2024): 159–66. http://dx.doi.org/10.5194/isprs-archives-xlviii-2-2024-159-2024.
Der volle Inhalt der QuelleChen, Meida, Devashish Lal, Zifan Yu, Jiuyi Xu, Andrew Feng, Suya You, Abdul Nurunnabi und Yangming Shi. „Large-Scale 3D Terrain Reconstruction Using 3D Gaussian Splatting for Visualization and Simulation“. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-2-2024 (11.06.2024): 49–54. http://dx.doi.org/10.5194/isprs-archives-xlviii-2-2024-49-2024.
Der volle Inhalt der QuelleDu, Yu, Zhisheng Zhang, Peng Zhang, Fuchun Sun und Xiao Lv. „UDR-GS: Enhancing Underwater Dynamic Scene Reconstruction with Depth Regularization“. Symmetry 16, Nr. 8 (08.08.2024): 1010. http://dx.doi.org/10.3390/sym16081010.
Der volle Inhalt der QuelleLyu, Xiaoyang, Yang-Tian Sun, Yi-Hua Huang, Xiuzhe Wu, Ziyi Yang, Yilun Chen, Jiangmiao Pang und Xiaojuan Qi. „3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting“. ACM Transactions on Graphics 43, Nr. 6 (19.11.2024): 1–12. http://dx.doi.org/10.1145/3687952.
Der volle Inhalt der QuelleSmirnov, Anton О. „Dynamic map management for Gaussian Splatting SLAM“. Control Systems and Computers, Nr. 2 (306) (Juli 2024): 3–9. http://dx.doi.org/10.15407/csc.2024.02.003.
Der volle Inhalt der QuelleKerbl, Bernhard, Andreas Meuleman, Georgios Kopanas, Michael Wimmer, Alexandre Lanvin und George Drettakis. „A Hierarchical 3D Gaussian Representation for Real-Time Rendering of Very Large Datasets“. ACM Transactions on Graphics 43, Nr. 4 (19.07.2024): 1–15. http://dx.doi.org/10.1145/3658160.
Der volle Inhalt der QuelleDong, Zheng, Ke Xu, Yaoan Gao, Hujun Bao, Weiwei Xu und Rynson W. H. Lau. „Gaussian Surfel Splatting for Live Human Performance Capture“. ACM Transactions on Graphics 43, Nr. 6 (19.11.2024): 1–17. http://dx.doi.org/10.1145/3687993.
Der volle Inhalt der QuelleDissertationen zum Thema "Gaussian splatting"
Dey, Arnab. „Rendu neuronal pour la représentation humaine en 3D avec des caractéristiques biomécaniques“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4036.
Der volle Inhalt der QuelleThe digital representation of real-world scenes, particularly human subjects, has long been a significant area of research due to its wide-ranging applications in various domains. Realistic virtual human avatars are critical for applications in medical diagnosis, augmented reality/virtual reality (AR/VR), and the entertainment industry. These avatars must accurately represent the human geometry, texture, and human biomechanics properties. This thesis focuses on the above mentioned topics by introducing innovative techniques for efficiently generating highly realistic virtual human avatars that capture both external visual features and underlying biomechanical properties using neural rendering techniques.Neural rendering techniques, particularly with the introduction of Neural Radiance Fields (NeRF) and Gaussian splatting, have recently shown great potential in generating photorealistic 3D scene representations from multiview images. Neural rendering has become an attractive choice for the 3D reconstruction community, not just due to its impressive photo-realistic quality, but also because of its simplicity, which has made it a popular choice for 3D human reconstruction as well as scene representation. However, one of the drawbacks of early NeRF methods was that they often struggled to estimate accurate 3D geometry and lacked additional properties such as structural human features and poses information. Building upon the benefits of neural rendering techniques, this thesis proposes novel approaches to address these limitations, enabling the generation of accurate 3D human avatars with biomechanical properties in real time.First, we address the broader issues of NeRF's inaccurate geometry and long training time by proposing Mip-NeRF RGB-D, a novel approach that leverages depth information to reduce training time and improve geometry, thereby enhancing the performance of NeRF-based techniques. Second, we focus on issues regarding NeRF-based human representation and introduce GHNeRF, a method designed to learn 2D and 3D joint locations of human subjects using the NeRF framework. GHNeRF utilizes pre-trained 2D image encoders to extract essential human features from 2D images, which are then integrated into the NeRF framework to estimate crucial biomechanical properties. Finally, we propose HFGaussian, a technique for generating virtual humans with 3D pose and biomechanical features in real time using a Gaussian splatting method. HFGaussian employs image encoders to extract relevant human features and a 3D pose estimation network to predict 3D human pose. The proposed methods have shown significant improvements in estimating photometric, geometric, and biomechanic properties through neural rendering techniques.The techniques presented in this thesis aim to enable the development of highly realistic virtual human avatars, allowing for a more engaging and natural user experiences in virtual environments. Furthermore, these methods have substantial potential to be applied in other domains such as medical applications, including diagnostic purposes, surgical planning, patient education, and biomechanical analysis
Buchteile zum Thema "Gaussian splatting"
Lee, Byeonghyeon, Howoong Lee, Xiangyu Sun, Usman Ali und Eunbyung Park. „Deblurring 3D Gaussian Splatting“. In Lecture Notes in Computer Science, 127–43. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-73636-0_8.
Der volle Inhalt der QuelleZhao, Lingzhe, Peng Wang und Peidong Liu. „BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting“. In Lecture Notes in Computer Science, 233–50. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72698-9_14.
Der volle Inhalt der QuelleRota Bulò, Samuel, Lorenzo Porzi und Peter Kontschieder. „Revising Densification in Gaussian Splatting“. In Lecture Notes in Computer Science, 347–62. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-73036-8_20.
Der volle Inhalt der QuelleLiang, Zhihao, Qi Zhang, Wenbo Hu, Lei Zhu, Ying Feng und Kui Jia. „Analytic-Splatting: Anti-Aliased 3D Gaussian Splatting via Analytic Integration“. In Lecture Notes in Computer Science, 281–97. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72643-9_17.
Der volle Inhalt der QuelleWang, Yuxuan, Xuanyu Yi, Zike Wu, Na Zhao, Long Chen und Hanwang Zhang. „View-Consistent 3D Editing with Gaussian Splatting“. In Lecture Notes in Computer Science, 404–20. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72761-0_23.
Der volle Inhalt der QuelleChang, Jiahao, Yinglin Xu, Yihao Li, Yuantao Chen, Wensen Feng und Xiaoguang Han. „GaussReg: Fast 3D Registration with Gaussian Splatting“. In Lecture Notes in Computer Science, 407–23. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72633-0_23.
Der volle Inhalt der QuelleBae, Jeongmin, Seoha Kim, Youngsik Yun, Hahyun Lee, Gun Bang und Youngjung Uh. „Per-Gaussian Embedding-Based Deformation for Deformable 3D Gaussian Splatting“. In Lecture Notes in Computer Science, 321–35. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72633-0_18.
Der volle Inhalt der QuelleBonilla, Sierra, Shuai Zhang, Dimitrios Psychogyios, Danail Stoyanov, Francisco Vasconcelos und Sophia Bano. „Gaussian Pancakes: Geometrically-Regularized 3D Gaussian Splatting for Realistic Endoscopic Reconstruction“. In Lecture Notes in Computer Science, 274–83. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72089-5_26.
Der volle Inhalt der QuelleZhang, Dongbin, Chuming Wang, Weitao Wang, Peihao Li, Minghan Qin und Haoqian Wang. „Gaussian in the Wild: 3D Gaussian Splatting for Unconstrained Image Collections“. In Lecture Notes in Computer Science, 341–59. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-73116-7_20.
Der volle Inhalt der QuelleLi, Yanyan, Chenyu Lyu, Yan Di, Guangyao Zhai, Gim Hee Lee und Federico Tombari. „GeoGaussian: Geometry-Aware Gaussian Splatting for Scene Rendering“. In Lecture Notes in Computer Science, 441–57. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72761-0_25.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Gaussian splatting"
Matsuki, Hidenobu, Riku Murai, Paul H. J. Kelly und Andrew J. Davison. „Gaussian Splatting SLAM“. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 18039–48. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.01708.
Der volle Inhalt der QuelleYu, Zehao, Anpei Chen, Binbin Huang, Torsten Sattler und Andreas Geiger. „Mip-Splatting: Alias-Free 3D Gaussian Splatting“. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 19447–56. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.01839.
Der volle Inhalt der QuelleYu, Heng, Joel Julin, Zoltán Á. Milacski, Koichiro Niinuma und László A. Jeni. „CoGS: Controllable Gaussian Splatting“. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 21624–33. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.02043.
Der volle Inhalt der QuelleQin, Minghan, Wanhua Li, Jiawei Zhou, Haoqian Wang und Hanspeter Pfister. „LangSplat: 3D Language Gaussian Splatting“. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 20051–60. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.01895.
Der volle Inhalt der QuelleDeguchi, Hiroyuki, Mana Masuda, Takuya Nakabayashi und Hideo Saito. „E2GS: Event Enhanced Gaussian Splatting“. In 2024 IEEE International Conference on Image Processing (ICIP), 1676–82. IEEE, 2024. http://dx.doi.org/10.1109/icip51287.2024.10647607.
Der volle Inhalt der QuelleChen, Zilong, Feng Wang, Yikai Wang und Huaping Liu. „Text-to-3D using Gaussian Splatting“. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 21401–12. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.02022.
Der volle Inhalt der QuelleHornáček, Martin, und Gregor Rozinaj. „Exploring 3D Gaussian Splatting: An Algorithmic Perspective“. In 2024 International Symposium ELMAR, 149–52. IEEE, 2024. http://dx.doi.org/10.1109/elmar62909.2024.10693978.
Der volle Inhalt der QuelleLiang, Zhihao, Qi Zhang, Ying Feng, Ying Shan und Kui Jia. „GS-IR: 3D Gaussian Splatting for Inverse Rendering“. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 21644–53. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.02045.
Der volle Inhalt der QuelleZhang, Jiahui, Fangneng Zhan, Muyu Xu, Shijian Lu und Eric Xing. „FreGS: 3D Gaussian Splatting with Progressive Frequency Regularization“. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 21424–33. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.02024.
Der volle Inhalt der QuelleKung, Pou-Chun, Seth Isaacson, Ram Vasudevan und Katherine A. Skinner. „SAD-GS: Shape-aligned Depth-supervised Gaussian Splatting“. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2842–51. IEEE, 2024. http://dx.doi.org/10.1109/cvprw63382.2024.00290.
Der volle Inhalt der Quelle