Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Gate oxide reliability“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Gate oxide reliability" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Gate oxide reliability"
Wan, Caiping, Yuanhao Zhang, Wenhao Lu, Niannian Ge, Tianchun Ye und Hengyu Xu. „Improving the reliability of MOS capacitor on 4H-SiC (0001) with phosphorus diffused polysilicon gate“. Semiconductor Science and Technology 37, Nr. 5 (07.04.2022): 055008. http://dx.doi.org/10.1088/1361-6641/ac606d.
Der volle Inhalt der QuelleMonsieur, F., E. Vincent, D. Roy, S. Bruyère, G. Pananakakis und G. Ghibaudo. „Gate oxide Reliability assessment optimization“. Microelectronics Reliability 42, Nr. 9-11 (September 2002): 1505–8. http://dx.doi.org/10.1016/s0026-2714(02)00179-8.
Der volle Inhalt der QuelleFronheiser, Jody, Aveek Chatterjee, Ulrike Grossner, Kevin Matocha, Vinayak Tilak und Liang Chun Yu. „Evaluation of 4H-SiC Carbon Face Gate Oxide Reliability“. Materials Science Forum 679-680 (März 2011): 354–57. http://dx.doi.org/10.4028/www.scientific.net/msf.679-680.354.
Der volle Inhalt der QuelleLee, Seok-Woo. „Novel Dual Gate Oxide Process with Improved Gate Oxide Integrity Reliability“. Electrochemical and Solid-State Letters 3, Nr. 1 (1999): 56. http://dx.doi.org/10.1149/1.1390957.
Der volle Inhalt der QuelleMoazzami, R., und C. Hu. „Projecting gate oxide reliability and optimizing reliability screens“. IEEE Transactions on Electron Devices 37, Nr. 7 (Juli 1990): 1643–50. http://dx.doi.org/10.1109/16.55751.
Der volle Inhalt der QuelleWeir, B. E., M. A. Alam, P. J. Silverman, F. Baumann, D. Monroe, J. D. Bude, G. L. Timp et al. „Ultra-thin gate oxide reliability projections“. Solid-State Electronics 46, Nr. 3 (März 2002): 321–28. http://dx.doi.org/10.1016/s0038-1101(01)00103-4.
Der volle Inhalt der QuelleDeivasigamani, Ravi, Gene Sheu, Aanand, Shao Wei Lu, Syed Sarwar Imam, Chiu-Chung Lai und Shao-Ming Yang. „Study of HCI Reliability for PLDMOS“. MATEC Web of Conferences 201 (2018): 02001. http://dx.doi.org/10.1051/matecconf/201820102001.
Der volle Inhalt der QuelleSenzaki, Junji, Atsushi Shimozato, Kozutoshi Kajima, Keiko Aryoshi, Takahito Kojima, Shinsuke Harada, Yasunori Tanaka, Hiroaki Himi und Hajime Okumura. „Electrical Properties of MOS Structures on 4H-SiC (11-20) Face“. Materials Science Forum 740-742 (Januar 2013): 621–24. http://dx.doi.org/10.4028/www.scientific.net/msf.740-742.621.
Der volle Inhalt der QuelleYamada, Keiichi, Osamu Ishiyama, Kentaro Tamura, Tamotsu Yamashita, Atsushi Shimozato, Tomohisa Kato, Junji Senzaki, Hirohumi Matsuhata und Makoto Kitabatake. „Reliability of Gate Oxides on 4H-SiC Epitaxial Surface Planarized by CMP Treatment“. Materials Science Forum 778-780 (Februar 2014): 545–48. http://dx.doi.org/10.4028/www.scientific.net/msf.778-780.545.
Der volle Inhalt der QuelleLiang, Xiaowen, Jiangwei Cui, Jing Sun, Haonan Feng, Dan Zhang, Xiaojuan Pu, Xuefeng Yu und Qi Guo. „The Influence of 10 MeV Proton Irradiation on Silicon Carbide Power Metal-Oxide-Semiconductor Field-Effect Transistor“. Journal of Nanoelectronics and Optoelectronics 17, Nr. 5 (01.05.2022): 814–19. http://dx.doi.org/10.1166/jno.2022.3255.
Der volle Inhalt der QuelleDissertationen zum Thema "Gate oxide reliability"
Owens, Gethin Lloyd. „Design of a reliability methodology : modelling the influence of temperature on gate oxide reliability“. Thesis, Durham University, 2007. http://etheses.dur.ac.uk/2695/.
Der volle Inhalt der QuelleZeng, Xu, und 曾旭. „Electrical reliability of N-Mos devices with N2O-based oxides as gate dielectrics“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31235475.
Der volle Inhalt der QuelleZeng, Xu. „Electrical reliability of N-Mos devices with N2O-based oxides as gate dielectrics /“. Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B1966980X.
Der volle Inhalt der QuelleJayaraman, Rajsekhar. „Reliability and 1/f noise properties of MOSFETs with nitrided oxide gate dielectrics“. Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/41582.
Der volle Inhalt der QuelleYan, Liang. „Characterisation of gate oxide and high-k dielectric reliability in strained si and sige cmos transistors“. Thesis, University of Newcastle Upon Tyne, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.506541.
Der volle Inhalt der QuelleKutty, Karan. „CLASS-E CASCODE POWER AMPLIFIER ANALYSIS AND DESIGN FOR LONG TERM RELIABILITY“. Master's thesis, University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2703.
Der volle Inhalt der QuelleM.S.E.E.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering MSEE
MA, JUN. „STUDY OF GATE OXIDE BREAKDOWN AND HOT ELECTRON EFFECT ON CMOS CIRCUIT PERFORMANCES“. Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3547.
Der volle Inhalt der QuellePh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering PhD
Matsumoto, Takashi. „Impact of Bias Temperature Instability and Random Telegraph Noise on CMOS Logic Circuits“. 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199461.
Der volle Inhalt der Quelle松本, 高士. „バイアス温度不安定性とランダムテレグラフノイズがCMOS論理回路特性に及ぼす影響“. Kyoto University, 2015. http://hdl.handle.net/2433/199558.
Der volle Inhalt der QuelleBoyer, Ludovic. „Analyse des propriétés de l'oxyde de grille des composants semi-conducteurs de puissance soumis à des contraintes électro-thermiques cycliques : vers la définition de marqueurs de vieillissement“. Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20028/document.
Der volle Inhalt der QuellePower semi-conductor devices are increasingly used as key parts of embedded power conversion systems in critical applications such as aerospace industry and ground transport. In such critical applications, these devices are submitted to harsh electrical, thermal and mechanical environments stresses which may significantly alter their reliability. An embedded power conversion system failure due to a power semi-conductor device breakdown may induce catastrophic results in terms of human safety, as well as economical dimensions. There is, indeed, a continuous demand on an increasing knowledge concerning the failure modes and the ageing mechanisms of power semi-conductor devices, as well as for development of new characterization techniques for ageing monitoring. The greatest part of the present work is focused on the monitoring of gate oxide properties evolutions of samples structures using the Capacitance-Voltage method (C-V method) -mainly employed in microelectronics- and the Thermal Step Method (TSM) -developed in Energy and Materials Group of IES-, as well as applying them to power semi-conductor devices. Coupling TSM and C-V method has allowed to approximately locate injected charges in the gate oxide of sample devices when submitted to electrical stresses comparable to the ones submitted to power semi-conductor devices
Bücher zum Thema "Gate oxide reliability"
Reiner, Joachim C. Latent gate oxide damage induced by ultra-fast electrostatic discharge. Konstanz: Hartung-Gorre, 1995.
Den vollen Inhalt der Quelle findenMeeting, Materials Research Society, und Symposium C, "CMOS Gate-Stack Scaling-- Materials, Interfaces and Reliability Implications" (2009 : San Francisco, Calif.), Hrsg. CMOS gate-stack scaling-- materials, interfaces and reliability implications: Symposium held April 14-16, 2009, San Francisco, california, U.S.A. Warrendale, Pa: Materials Research Society, 2009.
Den vollen Inhalt der Quelle findenC, Gupta D., Brown George A. 1937- und Conference on Gate Dielectric Integrity (1999 : San Jose, Calif.), Hrsg. Gate dielectric integrity: Material, process, and tool qualification. West Conshocken, Pa: ASTM, 2000.
Den vollen Inhalt der Quelle findenBill, Taylor, Alexander A. Demkov, H. Rusty Harris, Jeffery W. Butterbaugh und Willy Rachmady. CMOS Gate-Stack Scaling Vol. 1155: Materials, Interfaces and Reliability Implications. University of Cambridge ESOL Examinations, 2014.
Den vollen Inhalt der Quelle finden(Editor), Dinesh C. Gupta, und George Albert Brown (Editor), Hrsg. Gate Dielectric Integrity: Material, Process, and Tool Qualification (Astm Special Technical Publication// Stp) (Astm Special Technical Publication// Stp). ASTM International, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Gate oxide reliability"
Ghetti, A. „Gate Oxide Reliability: Physical and Computational Models“. In Springer Series in MATERIALS SCIENCE, 201–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09432-7_6.
Der volle Inhalt der QuelleVoors, I. J., K. Osinski, F. H. A. Vollebregt und C. A. Seams. „Gate Oxide Reliability in a Sealed Interface Local Oxidation Scheme“. In ESSDERC ’89, 361–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-52314-4_73.
Der volle Inhalt der QuelleTanimoto, Satoshi. „Impact of Dislocations on Gate Oxide in SiC MOS Devices and High Reliability ONO Dielectrics“. In Silicon Carbide and Related Materials 2005, 955–60. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-425-1.955.
Der volle Inhalt der QuelleFujihira, Keiko, Yoichiro Tarui, Ken Ichi Ohtsuka, Masayuki Imaizumi und Tetsuya Takami. „Effects of N2O Anneal on Channel Mobility of 4H-SiC MOSFET and Gate Oxide Reliability“. In Materials Science Forum, 697–700. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-963-6.697.
Der volle Inhalt der QuelleHirose, M., W. Mizubayashi, K. Morino, M. Fukuda und S. Miyazaki. „Tunneling Transport and Reliability Evaluation in Extremely Thin Gate Oxides“. In Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, 315–24. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5008-8_22.
Der volle Inhalt der QuelleSUÑE, JORDI, DAVID JIMENEZ und ENRIQUE MIRANDA. „BREAKDOWN MODES AND BREAKDOWN STATISTICS OF ULTRATHIN SiO2 GATE OXIDES“. In Oxide Reliability, 173–232. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778062_0004.
Der volle Inhalt der QuelleYeo, Yee-Chia, Qiang Lu und Chenming Hu. „MOSFET Gate Oxide Reliability: Anode Hole Injection Model and its Applications“. In Oxide Reliability, 233–70. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778062_0005.
Der volle Inhalt der QuelleKong, Moufu. „New Electronic Devices for Power Converters“. In Power Electronics, Radio Frequency and Microwave Engineering [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.108467.
Der volle Inhalt der QuelleChander, Sweta, und Sanjeet Kumar Sinha. „Performance Analysis of Electrical Characteristics of Hetero-junction LTFET at Different Temperatures for IoT Applications“. In Nanoelectronics Devices: Design, Materials, and Applications (Part I), 105–32. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815136623123010007.
Der volle Inhalt der QuelleSu, H. P., S. M. Lin und H. C. Cheng. „Effects of BF2+-Implanted Polysilicon Structures on the Reliability of Gate Oxides“. In Ion Implantation Technology–92, 655–58. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-89994-1.50140-x.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Gate oxide reliability"
Park, S., J. Kang, B. So und D. Baek. „Gate oxide integrity by initial gate current“. In 2009 IEEE International Integrated Reliability Workshop (IRW). IEEE, 2009. http://dx.doi.org/10.1109/irws.2009.5383020.
Der volle Inhalt der QuelleMcPherson, J. W., und D. A. Baglee. „Acceleration Factors for Thin Gate Oxide Stressing“. In 23rd International Reliability Physics Symposium. IEEE, 1985. http://dx.doi.org/10.1109/irps.1985.362066.
Der volle Inhalt der QuelleArabi, M., X. Federspiel, F. Cacho, M. Rafik, S. Blonkowski, X. Garros und G. Guibaudo. „Frequency dependant gate oxide TDDB model“. In 2022 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2022. http://dx.doi.org/10.1109/irps48227.2022.9764503.
Der volle Inhalt der QuelleGang Niu, Wei-Ting Kary Chien, Guan Zhang, Jianshu Yu, Xiaodong Zhao und Xiaobo Duan. „Gate oxide reliability improvement for UMOS technology“. In 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2015. http://dx.doi.org/10.1109/ipfa.2015.7224402.
Der volle Inhalt der QuelleHu, Chenming. „Reliability and Scaling of Thin Gate Oxide“. In 1997 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1997. http://dx.doi.org/10.7567/ssdm.1997.a-1-1.
Der volle Inhalt der QuelleYeoh, Teong-San, Nitin R. Kamat, Remesh S. Nair und Shze-Jer Hu. „Gate Oxide Breakdown Model in MOS Transistors“. In 33rd IEEE International Reliability Physics Symposium. IEEE, 1995. http://dx.doi.org/10.1109/irps.1995.363349.
Der volle Inhalt der QuelleRamey, S., und J. Hicks. „SILC and gate oxide breakdown characterization of 22nm tri-gate technology“. In 2014 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2014. http://dx.doi.org/10.1109/irps.2014.6860621.
Der volle Inhalt der QuelleJu, X., und D. S. Ang. „Gate-Oxide Trapping Enabled Synaptic Logic Transistor“. In 2020 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2020. http://dx.doi.org/10.1109/irps45951.2020.9129338.
Der volle Inhalt der QuelleTeong-San Yeoh, N. R. Kamat, R. S. Nair und Shze-Jer Hu. „Gate oxide breakdown model in MOS transistors“. In Proceedings of 1995 IEEE International Reliability Physics Symposium. IEEE, 1995. http://dx.doi.org/10.1109/relphy.1995.513668.
Der volle Inhalt der QuelleNishida, Toshikazu, und Scott E. Thompson. „Oxide Field and Temperature Dependences of Gate Oxide Degradation by Substrate Hot Electron Injection“. In 29th International Reliability Physics Symposium. IEEE, 1991. http://dx.doi.org/10.1109/irps.1991.363250.
Der volle Inhalt der Quelle