Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Gas-liquid equilibrium“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Gas-liquid equilibrium" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Gas-liquid equilibrium"
Stringari, S., M. Barranco, A. Polls, P. J. Nacher und F. Laloë. „Spin-polarized 3He : liquid gas equilibrium“. Journal de Physique 48, Nr. 8 (1987): 1337–50. http://dx.doi.org/10.1051/jphys:019870048080133700.
Der volle Inhalt der QuelleYAMAMOTO, Takayuki, Norizumi MOTOOKA, Osamu MORI und Yoshihiro KISHINO. „Gas-Liquid Equilibrium Thruster of IKAROS“. TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 12, ists29 (2014): Tf_13—Tf_18. http://dx.doi.org/10.2322/tastj.12.tf_13.
Der volle Inhalt der QuelleLibrovich, Bronislav V., Andrzej F. Nowakowski, Issa Chaer und Savvas Tassou. „Non-equilibrium gas-liquid transition model“. PAMM 7, Nr. 1 (Dezember 2007): 2100029–30. http://dx.doi.org/10.1002/pamm.200700233.
Der volle Inhalt der QuelleXu, Hui. „The Research on SO2 Desorption Equilibrium Mechanism of Sodium Alkali Desulfurization Regeneration Solution“. Advanced Materials Research 898 (Februar 2014): 461–64. http://dx.doi.org/10.4028/www.scientific.net/amr.898.461.
Der volle Inhalt der QuellePercus, Jerome K. „Classical liquid-gas interface in thermal equilibrium“. Journal of Statistical Physics 78, Nr. 3-4 (Februar 1995): 1165–69. http://dx.doi.org/10.1007/bf02183709.
Der volle Inhalt der QuelleClarke, Colin W., und David N. Glew. „Aqueous nonelectrolyte solutions. Part XV. The deuterium sulfide - deuterium oxide system and the deuterium sulfide D-hydrate“. Canadian Journal of Chemistry 76, Nr. 8 (01.08.1998): 1119–29. http://dx.doi.org/10.1139/v98-133.
Der volle Inhalt der QuelleChen, Panpan, Guoen Li, Hongfei Guo und Ji Lin Cao. „Phase Equilibrium Study on the Quaternary System H2O-Na2SO4-MgSO4-C3H8 at 0°C and Pressure“. Advanced Materials Research 550-553 (Juli 2012): 2690–94. http://dx.doi.org/10.4028/www.scientific.net/amr.550-553.2690.
Der volle Inhalt der QuelleMathis, Hélène. „A thermodynamically consistent model of a liquid-vapor fluid with a gas“. ESAIM: Mathematical Modelling and Numerical Analysis 53, Nr. 1 (Januar 2019): 63–84. http://dx.doi.org/10.1051/m2an/2018044.
Der volle Inhalt der QuelleCHUJO, Toshihiro, Norizumi MOTOOKA, Takayuki YAMAMOTO und Osamu MORI. „Development of Bipropellant Gas-Liquid Equilibrium Propulsion System“. TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 14 (2016): 9–14. http://dx.doi.org/10.2322/tastj.14.9.
Der volle Inhalt der QuelleMitrovic, J. „Upon equilibrium of gas bubble in infinite liquid“. Chemical Engineering Science 55, Nr. 12 (Juni 2000): 2265–70. http://dx.doi.org/10.1016/s0009-2509(99)00475-3.
Der volle Inhalt der QuelleDissertationen zum Thema "Gas-liquid equilibrium"
Taylor, Donald Fulton. „Measurement of binary phase equilibria and ternary/quaternary gas antisolvent (GAS) system measurement and analysis“. Thesis, Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-07112004-194307/unrestricted/taylor%5Fonald%5Ff%5F200407%5FMS.pdf.
Der volle Inhalt der QuelleCharles Eckert, Committee Chair ; Amyn Teja, Committee Member ; Pete Ludovice, Committee Member. Includes bibliographical references.
Gazawi, Ayman. „EVALUATING COSMO-RS FOR VAPOR LIQUID EQUILIBRIUM AND TURBOMOLE FOR IDEAL GAS PROPERTIES“. University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1196731182.
Der volle Inhalt der QuellePackwood, Daniel Miles. „Theoretical and Experimental Studies of the Gas-Liquid Interface“. Thesis, University of Canterbury. Department of Chemistry, 2010. http://hdl.handle.net/10092/4618.
Der volle Inhalt der QuelleGhasemian, Langeroudi Elahe. „Quantitative aspects of Co2-grafted amine interactions in gas-liquid-solid solubility equilibrium: Applications to Co2 capture“. Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/27879/27879.pdf.
Der volle Inhalt der QuelleGhasemian, Langeroudi Elahe. „Quantitative aspects of CO₂-grafted amine interactions in gas-liquid-solid solubility equilibrium : applications to CO₂ capture“. Master's thesis, Université Laval, 2010. http://hdl.handle.net/20.500.11794/21467.
Der volle Inhalt der QuelleSlack, Gregory C. „Coupled solid phase extraction-supercritical fluid extraction on-line gas chromatography of explosives from water“. Diss., This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-05042006-164508/.
Der volle Inhalt der QuelleKunz, Oliver. „A new equation of state for natural gases and other mixtures for the gas and liquid regions and the phase equilibrium“. [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=983888655.
Der volle Inhalt der QuelleVentura, Sónia Patrícia Marques. „Gas liquid equilibria at high pressures“. Master's thesis, Universidade de Aveiro, 2007. http://hdl.handle.net/10773/4865.
Der volle Inhalt der QuelleEste trabalho tem como objectivo a medição da solubilidade de gases em líquidos a altas pressões. Para a realização experimental foi usada uma célula de altas pressões de volume variável e um método de observação directa para a detecção das transições de fase. As condições usadas neste trabalho experimental foram temperaturas entre 276.00 e 373.15 K e pressões ate 100 MPa. Numa primeira fase foram efectuadas medições de solubilidade de metano em anilina pura e para uma solução aquosa de composição mássica igual a 5% em anilina. A anilina é fundamentalmente usada em processos como a produção de borracha, de poliuretanos, pigmentos e tintas, fármacos, herbicidas e fungicidas. É usualmente produzida através de processos de redução do nitrobenzeno por reacção com o HCl. De facto, esta síntese é um processo químico complexo onde um grande número de processos compete entre si. Alterações nas condições do processo com a possível formação de produtos intermediários podem afectar a eficiência do processo. Para a sua melhoria foi sugerido que o hidrogénio usado fosse simultaneamente produzido e gasto no reactor principal. Neste caso e para a produção do mesmo, era necessário adicionar metano e água ao reactor. Tendo por base a ideia de que as reacções onde o hidrogénio é reagente e produto ocorrem em simultâneo, torna-se clara a importância do estudo da solubilidade do metano em anilina pura e em soluções aquosas desta. Numa segunda fase foi estudada a solubilidade do dióxido de carbono em soluções aquosas de tri-iso-butil(metil)fosfónio tosilato, com composições molares são de 4, 8 e 12% em líquido iónico. Este pertencente à família dos fosfónios. Possui uma viscosidade e densidade elevadas, é térmica e quimicamente estável e ainda possui uma elevada polaridade. Apresenta uma miscibilidade completa em água e nos solventes mais usuais, como o diclorometano e tolueno, não sendo no entanto míscivel em hexano. O tri-isobutil( metil)fosfónium tosilato é usado como solvente nos processos de hidroformilação de olefinas e ainda em processos de captura e conversão de dióxido de carbono. Neste trabalho experimental, a temperatura e a pressão foram inicialmente aumentadas até o sistema atingir o equilíbrio. A pressão é diminuída lentamente até se verificar o aparecimento/desaparecimento da última bolha de gás. A pressão à qual a última bolha de gás desaparece representa a pressão de equilíbrio para aquela temperatura. Este procedimento foi efectuado para vários sistemas e várias temperaturas.
The aim of this work is the measurement of the solubilities of different gases in different liquids systems at high pressures. A variable volume high pressure cell was used to perform the measurements based on the visual synthetic method for the detection of phase transitions. The conditions used in this work were temperatures ranging from 276.00 to 373.15 K and pressures up to 100 MPa. The first step of this work was the measurement of methane’s solubility in pure aniline and for one aqueous solution of 5% (w/w) in aniline. The main applications of aniline are the manufacture of polyurethane, rubber, dyes and pigments, drugs and agrochemicals (herbicides and fungicides). This compound is normally produced by reduction of nitrobenzene by reaction with HCl. In fact, that synthesis is a complex chemical process where a number of competing processes contribute to the final product. Changes in process conditions with the possible formation of intermediates can act as catalyst poisons that change the process’s efficiency. For the improvement of the production process it was suggested that the hydrogen, used for the reduction of the nitrobenzene, could be simultaneously generated and used in the main reactor. In this case for the in situ production of hydrogen it would be necessary the addition of methane and water in the reactor. Having in mind that these reactions occur simultaneously, it becomes clear the importance of studying the solubility of methane in aniline and in its aqueous solutions. In the second step the solubility of carbon dioxide in aqueous solutions of triiso- butyl(methyl)phosphonium tosylate with molar compositions of 4, 8 and 12% molar of ionic liquid, was studied. This compound belongs to the phosphonium - based ionic liquids family. It is characterized by a high viscosity and density. It is thermal and chemically stable and has a high polarity. This compound is totally miscible with water as well as with common organic solvents such as dicloromethane and toluene but is not miscible with hexane. The main applications of Tri-iso-butyl(methyl)phosphonium tosylate are like solvents in the hydroformylation of olefins and in processes of capture and conversion of carbon dioxide. In this experimental work, temperature and pressure were slowly increased until the system becomes homogeneous. After that, the pressure is slowly decreased until the appearance/disappearance of the last bubble of gas. The pressure at witch the last bubble disappears represents the equilibrium pressure for that temperature. This procedure was repeated for several systems and several temperatures.
Li, Hailong. „Thermodynamic Properties of CO2 Mixtures and Their Applications in Advanced Power Cycles with CO2 Capture Processes“. Doctoral thesis, KTH, Energiprocesser, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9109.
Der volle Inhalt der QuelleQC 20100819
Povoleri, Fernanda Barbosa. „Modelagem e simulação da formação de hidratos de metano: um estudo do equilíbrio termodinâmico sólido-líquido-vapor“. Universidade do Estado do Rio de Janeiro, 2007. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=708.
Der volle Inhalt der QuelleO objetivo do presente trabalho é apresentar um estudo sobre o equilíbrio de fases sólido-líquido-vapor para hidratos de metano. A análise do equilíbrio trifásico sólido-líquido-vapor tem encontrado diversas aplicações para sistemas hidrocarboneto-água, uma vez que permite, por exemplo, a determinação da região de estabilidade de hidratos de metano e hidratos de gás natural. Inicialmente foi feita uma pesquisa sobre o estado da arte no que diz respeito ao comportamento termodinâmico e equilíbrio de fases de hidratos. Foram implementados os modelos apresentados por Ballard (2002) e Zhang et al. (2005). A proposta de Zhang et al. (2005) é aplicável para equilíbrios de fases a temperaturas abaixo de 300 K. Sua abordagem combinou a teoria de van der Waals e Platteeuw para a fase hidrato com a equação do estado de Peng-Robinson (1976) modificada por Stryjek e Vera (1986) para ambas as fases fluidas (fase vapor e fase aquosa). A abordagem de Ballard (2000) considerou a distorção do hidrato do seu estado padrão, o que fornece uma exata composição do hidrato e melhora a previsão da formação dos hidratos a altas pressões. Ao esclarecer a mudança de volume no hidrato, o raio da gaiola do hidrato é uma função do seu volume. Com isso, Ballard propôs uma nova abordagem considerando tal variação de volume e gerou um equilíbrio de fases em uma rotina de flash multifásico através da minimização da energia livre de Gibbs. Assim, o presente trabalho apresenta as abordagens de Zhang et al. (2005) e Ballard (2002) para o comportamento termodinâmico de hidratos e faz uma análise e comparação entre eles. Para resolver o problema do flash computacionalmente, foi utilizada a ferramenta lsqnonlin (built-in do software MATLAB). O lsqnonlin é um algoritmo baseado no método de Levenberg-Marquadt.
The objective of the present work is to present a study of solid-vapor-liquid three-phase equilibrium for methane hydrates. The analysis of three-phase equilibrium has several applications for water-hydrocarbon systems, since it permits, for example, determination of stability region for methane hydrates and natural gas hydrates. We have started seeking in literature about the state-of-art for thermodynamic behaviour and phase equilibrium for hydrates. And then the models proposed by Ballard (2002) and Zhang et al. (2005) were implemented. Zhang et al. (2005) have proposed a phase equilibrium for single-guest gas hydrates at temperatures below 300 K. Their approach has combined the van der WaalsPlatteeuw theory for the hydrate phase and the PengRobinson equation of state for both fluid phases (vapor and aqueous phase) (1976) modified by Stryjek and Vera (1986). Ballards (2000) approach has allowed the hydrate distortion from its standard state and has gave a more accurate composition of the hydrate and has improved hydrate formation predictions at high pressures. As a direct result of accounting for a changing hydrate volume, the cage radii were functions of the hydrate volume. Thus, Ballard have proposed the hydrate phase equilibrium by Gibbs energy minimization in a multi-phase flash routine. Thus, this work presents the Zhang et al. (2005) and Ballards (2002) approaches for hydrate thermodynamic behavior and makes an analysis and comparison of them. To compute the flash problem, we use the tool lsqnonlin (built-in of MATLAB software). The algorithm lsqnonlin is based on the Levenberg-Marquadt method.
Bücher zum Thema "Gas-liquid equilibrium"
Edwards, T. J. Phase behaviour studies for optimising hydrocarbon liquid production from the North West Shelf gas condensate fields: Results of research carried out as MERIWA Project No. M150 and ERDC Project No. 1475 at the School of Mathematical and Physical Sciences, Murdoch University, Western Astralia. East Perth, WA: Minerals and Energy Research Institute of Western Australia, 1995.
Den vollen Inhalt der Quelle findenSherwood, Dennis, und Paul Dalby. Phase equilibria. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782957.003.0015.
Der volle Inhalt der QuelleHandbook of physical vapor deposition (PVD) processing: Film formation, adhesion, surface preparation and contamination control. Westwood, N.J: Noyes Publications, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Gas-liquid equilibrium"
Middelburg, Jack J. „Introduction to Equilibrium“. In SpringerBriefs in Earth System Sciences, 49–57. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53407-2_5.
Der volle Inhalt der QuelleYang, Shenglai. „Phase State of Reservoir Hydrocarbons and Gas–Liquid Equilibrium“. In Fundamentals of Petrophysics, 75–133. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53529-5_3.
Der volle Inhalt der QuelleKarakashev, Stoyan I., Anh V. Nguyen und Jan D. Miller. „Equilibrium Adsorption of Surfactants at the Gas–Liquid Interface“. In Advances in Polymer Science, 25–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/12_2008_161.
Der volle Inhalt der QuelleYang, Shenglai. „Phase State of Reservoir Hydrocarbons and Gas–Liquid Equilibrium“. In Fundamentals of Petrophysics, 75–133. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55029-8_3.
Der volle Inhalt der QuelleHeinen, Matthias, Simon Homes, Gabriela Guevara-Carrion und Jadran Vrabec. „Mass Transport Across Droplet Interfaces by Atomistic Simulations“. In Fluid Mechanics and Its Applications, 251–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09008-0_13.
Der volle Inhalt der QuelleWhite, Gary L., und Carl T. Lira. „Four-Phase (Solid—Solid—Liquid—Gas) Equilibrium of Two Ternary Organic Systems with Carbon Dioxide“. In ACS Symposium Series, 111–20. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/bk-1989-0406.ch009.
Der volle Inhalt der QuelleLatipovna, Alimbabaeva Zulkhumar, Yakubov Lazizkhan Ergashkhanovich und Narimov Dilshodjon Shukhratovich. „Obtaining Liquid Hydrocarbons by Processing of Natural and Associated Petroleum Gas in a Flow Reactor with a Non-equilibrium Electric Discharge“. In International Conference on Reliable Systems Engineering (ICoRSE) - 2022, 125–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15944-2_12.
Der volle Inhalt der QuelleRaal, J. David, und Andreas L. Mühlbauer. „Gas-Liquid Chromatograph Detector Calibration and Chemical Purity Determination“. In Phase Equilibria, 105–30. Boca Raton: Routledge, 2023. http://dx.doi.org/10.1201/9780203743621-5.
Der volle Inhalt der QuelleKryukov, Alexei, Vladimir Levashov und Yulia Puzina. „Evaporation and Condensation of Vapor–Gas Mixtures“. In Non-Equilibrium Phenomena near Vapor-Liquid Interfaces, 9–23. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00083-1_3.
Der volle Inhalt der QuelleBogel-Łukasik, Ewa, Ana Serbanovic, Rafal Bogel-Łukasik, Anna Banet-Osuna, Vesna Najdanovic-Visak und Manuel Nunes da Ponte. „Hydrogenation of CO2-Expanded Liquid Terpenes: Phase Equilibrium-Controlled Kinetics“. In Gas-Expanded Liquids and Near-Critical Media, 191–201. Washington, DC: American Chemical Society, 2009. http://dx.doi.org/10.1021/bk-2009-1006.ch009.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Gas-liquid equilibrium"
Becke, Peter, Dagobert Kessel und Iradj Rahimian. „Influence of Liquid Hydrocarbons on Gas Hydrate Equilibrium“. In European Petroleum Conference. Society of Petroleum Engineers, 1992. http://dx.doi.org/10.2118/25032-ms.
Der volle Inhalt der QuelleFu, Cheng-Tze, Rao Puttangunla und George Vilcsak. „Vapour-Liquid Equilibrium Properties For Gas - Cold Lake Bitumen“. In Annual Technical Meeting. Petroleum Society of Canada, 1986. http://dx.doi.org/10.2118/86-37-05.
Der volle Inhalt der QuelleShuker, Muhannad T., und Firas Ismail. „Prediction of Solid-Vapor-Liquid Equilibrium in Natural Gas Using ANNs“. In International Petroleum Technology Conference. International Petroleum Technology Conference, 2011. http://dx.doi.org/10.2523/iptc-15492-ms.
Der volle Inhalt der QuelleT. Shuker, Muhannad, und Firas Ismail. „Prediction of Solid-Vapor-Liquid Equilibrium in Natural Gas Using ANNs“. In International Petroleum Technology Conference. Society of Petroleum Engineers, 2011. http://dx.doi.org/10.2523/15492-ms.
Der volle Inhalt der QuelleReese, Jason M., und William D. Nicholls. „Perspectives on the Simulation of Micro Gas and Nano Liquid Flows“. In ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58296.
Der volle Inhalt der QuelleFayzullaev, Bayram. „Mathematical Modeling of Liquid-Gas Phase Equilibrium on the Example of Soda Production“. In 2022 International Conference on Information Science and Communications Technologies (ICISCT). IEEE, 2022. http://dx.doi.org/10.1109/icisct55600.2022.10146864.
Der volle Inhalt der QuelleYamamoto, Takayuki, Osamu Mori und Maki Shida, Mr. „Development and mission status report of gas-liquid equilibrium thruster for the small satellite“. In 57th International Astronautical Congress. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.iac-06-b5.5.06.
Der volle Inhalt der QuelleLai, Mark K. „CFD Analysis of Liquid Spray Combustion in a Gas Turbine Combustor“. In ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-309.
Der volle Inhalt der QuelleMacpherson, Graham B., und Jason M. Reese. „Molecular Dynamics for Near Surface Flows in Nano Liquid and Micro Gas Systems“. In ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2006. http://dx.doi.org/10.1115/icnmm2006-96170.
Der volle Inhalt der QuelleShin, Byeong Rog, Satoru Yamamoto und Xin Yuan. „Application of Preconditioning Method to Gas-Liquid Two-Phase Flow Computations“. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45388.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Gas-liquid equilibrium"
Bullin, J. A., und R. E. Frazier. Collection of VLE data for acid gas---alkanolamine systems using fourier transform infrared spectroscopy. [Vapor-liquid equilibrium]. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/7026066.
Der volle Inhalt der QuelleReilly, John, und Sergey Paltsev. Biomass Energy and Competition for Land. GTAP Working Paper, April 2008. http://dx.doi.org/10.21642/gtap.wp46.
Der volle Inhalt der QuelleChao, K. C. Gas-liquid-liquid equilibria in mixtures of water, light gases, and hydrocarbons. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/6312893.
Der volle Inhalt der QuelleChao, K. Gas-liquid-liquid equilibria in mixtures of water, light gases, and hydrocarbons. Office of Scientific and Technical Information (OSTI), Januar 1989. http://dx.doi.org/10.2172/5361514.
Der volle Inhalt der QuelleSteinbuks, Jevgenijs, und Thomas Hertel. Forest, Agriculture, and Biofuels in a Land use model with Environmental services (FABLE). GTAP Working Paper, Oktober 2012. http://dx.doi.org/10.21642/gtap.wp71.
Der volle Inhalt der Quelle