Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „GaN Power Devices“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "GaN Power Devices" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "GaN Power Devices"
Langpoklakpam, Catherine, An-Chen Liu, Yi-Kai Hsiao, Chun-Hsiung Lin und Hao-Chung Kuo. „Vertical GaN MOSFET Power Devices“. Micromachines 14, Nr. 10 (16.10.2023): 1937. http://dx.doi.org/10.3390/mi14101937.
Der volle Inhalt der QuelleCHU, K. K., P. C. CHAO und J. A. WINDYKA. „STABLE HIGH POWER GaN-ON-GaN HEMT“. International Journal of High Speed Electronics and Systems 14, Nr. 03 (September 2004): 738–44. http://dx.doi.org/10.1142/s0129156404002764.
Der volle Inhalt der QuelleNela, Luca, Ming Xiao, Yuhao Zhang und Elison Matioli. „A perspective on multi-channel technology for the next-generation of GaN power devices“. Applied Physics Letters 120, Nr. 19 (09.05.2022): 190501. http://dx.doi.org/10.1063/5.0086978.
Der volle Inhalt der QuelleZhang, A. P., F. Ren, T. J. Anderson, C. R. Abernathy, R. K. Singh, P. H. Holloway, S. J. Pearton, D. Palmer und G. E. McGuire. „High-Power GaN Electronic Devices“. Critical Reviews in Solid State and Materials Sciences 27, Nr. 1 (Januar 2002): 1–71. http://dx.doi.org/10.1080/20014091104206.
Der volle Inhalt der QuelleOtsuka, Nobuyuki, Shuichi Nagai, Hidetoshi Ishida, Yasuhiro Uemoto, Tetsuzo Ueda, Tsuyoshi Tanaka und Daisuke Ueda. „(Invited) GaN Power Electron Devices“. ECS Transactions 41, Nr. 8 (16.12.2019): 51–70. http://dx.doi.org/10.1149/1.3631486.
Der volle Inhalt der QuelleMartín-Guerrero, Teresa M., Damien Ducatteau, Carlos Camacho-Peñalosa und Christophe Gaquière. „GaN devices for power amplifier design“. International Journal of Microwave and Wireless Technologies 1, Nr. 2 (April 2009): 137–43. http://dx.doi.org/10.1017/s1759078709000178.
Der volle Inhalt der QuelleDi, Kuo, und Bingcheng Lu. „Gallium Nitride Power Devices in Magnetically Coupled Resonant Wireless Power Transfer Systems“. Journal of Physics: Conference Series 2463, Nr. 1 (01.03.2023): 012007. http://dx.doi.org/10.1088/1742-6596/2463/1/012007.
Der volle Inhalt der QuelleRoberts, J., A. Mizan und L. Yushyna. „Optimized High Power GaN Transistors“. Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015, HiTEN (01.01.2015): 000195–99. http://dx.doi.org/10.4071/hiten-session6-paper6_1.
Der volle Inhalt der QuelleZhang, Yuhao, Ruizhe Zhang, Qihao Song, Qiang Li und J. Liu. „(Invited) Breakthrough Avalanche and Short Circuit Robustness in Vertical GaN Power Devices“. ECS Meeting Abstracts MA2022-01, Nr. 31 (07.07.2022): 1307. http://dx.doi.org/10.1149/ma2022-01311307mtgabs.
Der volle Inhalt der QuelleZhong, Min, Ying Xi Niu, Hai Ying Cheng, Chen Xi Yan, Zhi Yuan Liu und Dong Bo Song. „Advances for Enhanced GaN-Based HEMT Devices with p-GaN Gate“. Materials Science Forum 1014 (November 2020): 75–85. http://dx.doi.org/10.4028/www.scientific.net/msf.1014.75.
Der volle Inhalt der QuelleDissertationen zum Thema "GaN Power Devices"
Zhang, Yuhao Ph D. Massachusetts Institute of Technology. „GaN-based vertical power devices“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112002.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 163-170).
Power electronics based on Gallium Nitride (GaN) is expected to significantly reduce the losses in power conversion circuits and increase the power density. This makes GaN devices very exciting candidates for next-generation power electronics, for the applications in electric vehicles, data centers, high-power and high-frequency communications. Currently, both lateral and vertical structures are considered for GaN power devices. In particular, vertical GaN power devices have attracted significant attention recently, due to the potential for achieving high breakdown voltage and current levels without enlarging the chip size. In addition, these vertical devices show superior thermal performance than their lateral counterparts. This PhD thesis addresses several key obstacles in developing vertical GaN power devices. The commercialization of vertical GaN power devices has been hindered by the high cost of bulk GaN. The first project in this PhD thesis demonstrated the feasibility of making vertical devices on a low-cost silicon (Si) substrate for the first time. The demonstrated high performance shows the great potential of low-cost vertical GaN-on-Si devices for 600-V level high-current and high-power applications. This thesis has also studied the origin of the off-state leakage current in vertical GaN pn diodes on Si, sapphire and GaN substrates, by experiments, analytical calculations and TCAD simulations. Variable-range-hopping through threading dislocations was identified as the main off-state leakage mechanism in these devices. The design space of leakage current of vertical GaN devices has been subsequently derived. Thirdly, a novel GaN vertical Schottky rectifier with trench MIS structures and trench field rings was demonstrated. The new structure greatly enhanced the reverse blocking characteristics while maintaining a Schottky-like good forward conduction. This new device shows great potential for using advanced vertical Schottky rectifiers for high-power and high-frequency applications. Finally, we investigated a fundamental and significant challenge for GaN power devices: the lack of reliable and generally useable patterned pn junctions. Two approaches have been proposed to make lateral patterned pn junctions. Two devices, junction barrier Schottky devices and super-junction devices, have been designed and optimized. Preliminary experimental results were also demonstrated for the feasibility of making patterned pn junctions and fabricating novel power devices.
by Yuhao Zhang.
Ph. D.
Unni, Vineet. „Next-generation GaN power semiconductor devices“. Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/11984/.
Der volle Inhalt der QuelleNakazawa, Satoshi. „Interface Charge Engineering in AlGaN/GaN Heterostructures for GaN Power Devices“. Kyoto University, 2019. http://hdl.handle.net/2433/244553.
Der volle Inhalt der QuelleLui, Dawei. „Active gate driver design for GaN FET power devices“. Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730883.
Der volle Inhalt der QuelleKumar, Ashwani. „Novel approaches to power efficient GaN and negative capacitance devices“. Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/22492/.
Der volle Inhalt der QuelleLi, Ke. „Wide bandgap (SiC/GaN) power devices characterization and modeling : application to HF power converters“. Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10080/document.
Der volle Inhalt der QuelleCompared to traditional silicon (Si) semiconductor material, wide bandgap (WBG) materials like silicon carbide (SiC) and gallium nitride are gradually applied to fabricate power semiconductor devices, which are used in power converters to achieve high power efficiency, high operation temperature and high switching frequency. As those power devices are relatively new, their characterization and modeling are important to better understand their characteristics for better use. This dissertation is mainly focused on those WBG power semiconductor devices characterization, modeling and fast switching currents measurement. In order to measure their static characteristics, a single-pulse method is presented. A SiC diode and a "normally-off" SiC JFET is characterized by this method from ambient temperature to their maximal junction temperature with the maximal power dissipation around kilowatt. Afterwards, in order to determine power device inter-electrode capacitances, a measurement method based on the use of multiple current probes is proposed and validated by measuring inter-electrode capacitances of power devices of different technologies. Behavioral models of a Si diode and the SiC JFET are built by using the results of the above characterization methods, by which the evolution of the inter-electrode capacitances for different operating conditions are included in the models. Power diode models are validated with the measurements, in which the current is measured by a proposed current surface probe
Brooks, Clive Raymond. „GaN microwave power FET nonlinear modelling techniques“. Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4306.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The main focus of this thesis is to document the formulation, extraction and validation of nonlinear models for the on-wafer gallium nitride (GaN) high-electron mobility (HEMT) devices manufactured at the Interuniversity Microelectronics Centre (IMEC) in Leuven, Belgium. GaN semiconductor technology is fast emerging and it is expected that these devices will play an important role in RF and microwave power amplifier applications. One of the main advantages of the new GaN semiconductor technology is that it combines a very wide band-gap with high electron mobility, which amounts to higher levels of gain at very high frequencies. HEMT devices based on GaN, is a fairly new technology and not many nonlinear models have been proposed in literature. This thesis details the design of hardware and software used in the development of the nonlinear models. An intermodulation distortion (IMD) measurement setup was developed to measure the second and higher-order derivative of the nonlinear drain current. The derivatives are extracted directly from measurements and are required to improve the nonlinear model IMD predictions. Nonlinear model extraction software was developed to automate the modelling process, which was fundamental in the nonlinear model investigation. The models are implemented in Agilent’s Advanced Design System (ADS) and it is shown that the models are capable of accurately predicting the measured S-parameters, large-signal singletone and two-tone behaviour of the GaN devices.
AFRIKAANSE OPSOMMING: Die hoofdoel van hierdie tesis is om die formulering, ontrekking en validasie van nie-lineêre modelle vir onverpakte gallium nitraat (GaN) hoë-elektronmobilisering transistors (HEMTs) te dokumenteer. Die transistors is vervaaardig by die Interuniversity Microelectronics Centre (IMEC) in Leuven, België. GaN-halfgeleier tegnologie is besig om vinnig veld te wen en daar word voorspel dat hierdie transistors ʼn belangrike rol gaan speel in RF en mikrogolf kragversterker toepassings. Een van die hoof voordele van die nuwe GaN-halfgeleier tegnologie is dat dit 'n baie wyd band-gaping het met hoë-elektronmobilisering, wat lei tot hoë aanwins by mikrogolf frekwensies. GaN HEMTs is 'n redelik nuwe tegnologie en nie baie nie-lineêre modelle is al voorgestel in literatuur nie. Hierdie tesis ondersoek die ontwerp van die hardeware en sagteware soos gebruik in die ontwikkeling van nie-lineêre modelle. 'n Intermodulasie distorsie-opstelling (IMD-opstelling) is ontwikkel vir die meting van die tweede en hoër orde afgeleides van die nie-lineêre stroom. Die afgeleides is direk uit die metings onttrek en moet die nie-lineêre IMD-voorspellings te verbeter. Nie-lineêre onttrekking sagteware is ontwikkel om die modellerings proses te outomatiseer. Die modelle word geïmplementeer in Agilent se Advanced Design System (ADS) en bewys dat die modelle in staat is om akkurate afgemete S-parameters, grootsein enkeltoon en tweetoon gedrag van die GaN-transistors te kan voorspel.
Borga, Matteo. „Characterization and modeling of GaN-based transistors for power applications“. Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3422355.
Der volle Inhalt der QuelleMurillo, Carrasco Luis. „Modelling, characterisation and application of GaN switching devices“. Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/modelling-characterisation-and-application-of-gan-switching-devices(a227368d-1029-4005-950c-2a098a5c5633).html.
Der volle Inhalt der QuelleWaller, William Michael. „Optimisation of AlGaN/GaN power devices : interface analysis, fieldplate control and current collapse“. Thesis, University of Bristol, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.743050.
Der volle Inhalt der QuelleBücher zum Thema "GaN Power Devices"
Meneghini, Matteo, Gaudenzio Meneghesso und Enrico Zanoni, Hrsg. Power GaN Devices. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43199-4.
Der volle Inhalt der QuelleDi Paolo Emilio, Maurizio. GaN and SiC Power Devices. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3.
Der volle Inhalt der QuelleFan, Ren, und Zolper J. C, Hrsg. Wide energy bandgap electronic devices. River Edge, NJ: World Scientific Pub., 2003.
Den vollen Inhalt der Quelle findenI︠A︡ntovskiĭ, E. I. Zero emissions power cycles. Boca Raton: CRC Press, 2009.
Den vollen Inhalt der Quelle findenI︠A︡ntovskiĭ, E. I. Zero emissions power cycles. Boca Raton: CRC Press, 2009.
Den vollen Inhalt der Quelle findenJ, Górski, und Shokotov M, Hrsg. Zero emissions power cycles. Boca Raton: Taylor & Francis, 2009.
Den vollen Inhalt der Quelle finden1937-, Johnson J. H., Baines Thomas M und Clerc James C, Hrsg. Diesel particulate emissions: Measurement techniques, fuel effects and control technology. Warrendale, PA: Society of Automotive Engineers, 1992.
Den vollen Inhalt der Quelle finden1932-, Van Basshuysen Richard, Hrsg. Reduced emissions and fuel consumption in automobile engines. Wien: Springer-Verlag, 1995.
Den vollen Inhalt der Quelle findenCommittee, New Jersey Legislature General Assembly Environment and Solid Waste. Committee meeting of Assembly Environment and Solid Waste Committee: Assembly bill nos. 409 and 2439 : discussion on the implementation of the phase II California Low Emission Vehicle program beginning in calendar year 2006. Trenton, N.J: Office of Legislative Services, Public Information Office, Hearing Unit, 2002.
Den vollen Inhalt der Quelle findenCommittee, New Jersey Legislature General Assembly Environment and Solid Waste. Committee meeting of Assembly Environment and Solid Waste Committee: Assembly bill no. 3301: the Global Warming Response Act : Committee Room 9, State House Annex, Trenton, New Jersey, February 26, 2007, 2:00 p.m. Trenton, NJ: New Jersey State Legislature, Assembly Environment and Solid Waste Committee, 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "GaN Power Devices"
Di Paolo Emilio, Maurizio. „GaN Applications“. In GaN and SiC Power Devices, 93–119. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3_6.
Der volle Inhalt der QuelleDi Paolo Emilio, Maurizio. „Silicon Power Devices“. In GaN and SiC Power Devices, 9–17. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3_2.
Der volle Inhalt der QuelleDi Paolo Emilio, Maurizio. „Gallium Nitride Power Devices“. In GaN and SiC Power Devices, 49–91. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3_5.
Der volle Inhalt der QuelleZekentes, Konstantinos, Victor Veliadis, Sei-Hyung Ryu, Konstantin Vasilevskiy, Spyridon Pavlidis, Arash Salemi und Yuhao Zhang. „SiC and GaN Power Devices“. In More-than-Moore Devices and Integration for Semiconductors, 47–104. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21610-7_2.
Der volle Inhalt der QuelleDi Paolo Emilio, Maurizio. „Silicon Carbide Devices“. In GaN and SiC Power Devices, 143–63. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3_8.
Der volle Inhalt der QuelleDi Paolo Emilio, Maurizio. „Power Electronics Processing“. In GaN and SiC Power Devices, 1–7. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3_1.
Der volle Inhalt der QuelleDeboy, Gerald, und Matthias Kasper. „Positioning and Perspectives of GaN-Based Power Devices“. In GaN Technology, 353–60. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63238-9_8.
Der volle Inhalt der QuelleBin, Dong. „9 The Packaging Technologies for GaN HEMTs“. In Gallium Nitride Power Devices, 261–80. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315196626-10.
Der volle Inhalt der QuelleMeneghesso, Gaudenzio, Enrico Zanoni, Matteo Meneghini, Maria Ruzzarin und Isabella Rossetto. „Reliability of GaN-Based Power Devices“. In Integrated Circuits and Systems, 75–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77994-2_4.
Der volle Inhalt der QuelleAhirwar, Archana, Poonam Singh, S. K. Tomar, Meena Mishra, Ashok Kumar und B. K. Sehgal. „GaN HEMT Based S-Band Power Amplifier“. In Physics of Semiconductor Devices, 75–76. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "GaN Power Devices"
Fischer, Sandra, Florian Mayer, Verena Leitgeb, Lisa Mitterhuber und Elke Kraker. „Thermal characterization of vertical GaN based power devices“. In 2024 30th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/therminic62015.2024.10732258.
Der volle Inhalt der QuelleIshida, Masahiro, Yasuhiro Uemoto, Tetsuzo Ueda, Tsuyoshi Tanaka und Daisuke Ueda. „GaN power switching devices“. In 2010 International Power Electronics Conference (IPEC - Sapporo). IEEE, 2010. http://dx.doi.org/10.1109/ipec.2010.5542030.
Der volle Inhalt der QuelleLi, Wenwen, und Dong Ji. „Vertical GaN Power Devices“. In 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 2023. http://dx.doi.org/10.1109/edtm55494.2023.10103087.
Der volle Inhalt der QuelleChen, Kevin J., und Chunhua Zhou. „GaN Smart Discrete power devices“. In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667646.
Der volle Inhalt der QuelleZhang, Y., M. Sun, A. Munoz, J. A. Perozek, X. Gao, K. Shepard, S. Bedell, D. Sadana und T. Palacios. „Novel Vertical GaN Power Devices“. In 2018 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2018. http://dx.doi.org/10.7567/ssdm.2018.d-1-01.
Der volle Inhalt der QuelleCHU, K. K., P. C. CHAO und J. A. WINDYKA. „STABLE HIGH POWER GaN-ON-GaN HEMT“. In High Performance Devices - 2004 IEEE Lester Eastman Conference. Singapore: World Scientific Publishing Co. Pte. Ltd., 2005. http://dx.doi.org/10.1142/9789812702036_0019.
Der volle Inhalt der QuelleChristensen, Adam, und Samuel Graham. „Heat Dissipation in GaN Power Semiconductor Devices“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61525.
Der volle Inhalt der QuelleKachi, Tetsu, Masakazu Kanechika und Tsutomu Uesugi. „Automotive Applications of GaN Power Devices“. In 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). IEEE, 2011. http://dx.doi.org/10.1109/csics.2011.6062459.
Der volle Inhalt der QuelleKachi, Tetsu. „GaN Power Devices for Automotive Applications“. In 2007 IEEE Compound Semiconductor Integrated Circuit Symposium. IEEE, 2007. http://dx.doi.org/10.1109/csics07.2007.6.
Der volle Inhalt der QuelleUesugi, T., und Tetsu Kachi. „GaN power devices for automotive applications“. In SPIE OPTO, herausgegeben von Jen-Inn Chyi, Yasushi Nanishi, Hadis Morkoç, Joachim Piprek, Euijoon Yoon und Hiroshi Fujioka. SPIE, 2013. http://dx.doi.org/10.1117/12.2002248.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "GaN Power Devices"
Baker, Bryant. A 3.6 GHz Doherty Power Amplifier with a 40 dBm Saturated Output Power using GaN on SiC HEMT Devices. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.1780.
Der volle Inhalt der QuelleMazumder, Sudip K. Optically-gated Non-latched High Gain Power Device. Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada493165.
Der volle Inhalt der QuelleKurtz, Steven Ross, David Martin Follstaedt, Alan Francis Wright, Albert G. Baca, Ronald D. Briggs, Paula Polyak Provencio, Nancy A. Missert et al. Materials physics and device development for improved efficiency of GaN HEMT high power amplifiers. Office of Scientific and Technical Information (OSTI), Dezember 2005. http://dx.doi.org/10.2172/883465.
Der volle Inhalt der QuelleBajwa, Abdullah, und Timothy Jacobs. PR-457-17201-R02 Residual Gas Fraction Estimation Based on Measured Engine Parameters. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Februar 2019. http://dx.doi.org/10.55274/r0011558.
Der volle Inhalt der QuelleHopper. L30500 Analysis of the Effects of High-Voltage Direct-Current Transmission Systems on Buried Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 2008. http://dx.doi.org/10.55274/r0010196.
Der volle Inhalt der QuelleSoramäki, Kimmo. Financial Cartography. FNA, Oktober 2019. http://dx.doi.org/10.69701/ertx8007.
Der volle Inhalt der Quelle