Auswahl der wissenschaftlichen Literatur zum Thema „Gamma-rays imaging“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Gamma-rays imaging" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Gamma-rays imaging"

1

Zarifmahmoudi, Leili, und Ramin Sadeghi. „Scattered gamma rays“. Nuclear Medicine Communications 36, Nr. 7 (Juli 2015): 755–56. http://dx.doi.org/10.1097/mnm.0000000000000324.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Koshikawa, N., A. Omata, M. Masubuchi, Y. Okazaki, J. Kataoka, K. Matsunaga, H. Kato, A. Toyoshima, Y. Wakabayashi und T. Kobayashi. „Activation imaging of drugs with hybrid Compton camera: A proof-of-concept study“. Applied Physics Letters 121, Nr. 19 (07.11.2022): 193701. http://dx.doi.org/10.1063/5.0116570.

Der volle Inhalt der Quelle
Annotation:
The visualization of drugs is essential for cancer treatment. Although several methods for visualizing drugs have been proposed, a versatile method that can be easily applied to various drugs has not yet been established. Therefore, we propose “activation imaging,” in which a drug is irradiated with thermal neutrons and becomes radioactive, enabling visualization using emitted x rays and/or gamma rays. Activation imaging does not require the conjugation of specific tracers with drugs. Therefore, it can be easily applied to a variety of drugs, drug carriers (e.g., metal nanoparticles), and contrast agents. In this study, neutron activation, gamma-ray spectroscopy, and imaging of drug carriers, anticancer drug, and contrast agents were performed. Gold nanoparticles (AuNPs) and platinum nanoparticles were used as drug carriers, cisplatin was used as an anticancer drug, and gadoteridol and iohexol were used as contrast agents. As a neutron source, the RIKEN accelerator-driven compact neutron source II (RANS-II) was utilized. The imaging was performed using a hybrid Compton camera (HCC). The HCC can visualize x rays and gamma rays ranging from a few keV to nearly 1 MeV, which enables the imaging of various x rays and gamma rays emitted from the activated drugs. As a result, the gamma-ray spectra indicated the generation of radioisotopes through neutron irradiation, and AuNPs and iohexol were visualized.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Uenomachi, M., K. Shimazoe und H. Takahashi. „Double photon coincidence crosstalk reduction method for multi-nuclide Compton imaging“. Journal of Instrumentation 17, Nr. 04 (01.04.2022): P04001. http://dx.doi.org/10.1088/1748-0221/17/04/p04001.

Der volle Inhalt der Quelle
Annotation:
Abstract Compton imaging based on Compton scattering kinematics has the potential to visualize multi-nuclides by discriminating the total energy of Compton scattering and photoelectric absorption events. This feature enables us to perform multi-tracer imaging that reflects different functional information in nuclear medicine, resulting in a definitive diagnosis and being useful for biological and medical research. One of the challenges with multi-nuclide imaging is the crosstalk artifacts caused by scattered photons of higher energy gamma-rays. In this study, we investigated the potential benefits of the double photon coincidence detection as a drastic crosstalk reduction method. Coincidence detection of successive gamma-rays can differentiate nuclides and reduce the background caused by other nuclides' gamma-rays because some nuclides emit two or more gamma-rays in rapid succession. In this study, we focused on the coincidence detection of a Compton event and a photoelectric absorption event, and we showed simultaneous double photon emitter imaging of 111In and 177Lu with a ring-type Compton imaging system. The artifacts caused by other nuclides' gamma-rays were reduced by extracting Compton events coincident with photoelectric absorption events. The coincidence Compton images demonstrated a signal-to-background ratio improvement of 1.1–1.7 times over the one of no-coincidence Compton images, despite a drop in intrinsic detection efficiency of the order of 10-2. This strategy of directly reducing crosstalk will be useful in other combinations imaging such as of 111In (or 177Lu) and a positron emission tomography nuclide.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yamamoto, Seiichi, Hiroshi Watabe, Kohei Nakanishi, Takuya Yabe, Mitsutaka Yamaguchi, Naoki Kawachi, Kei Kamada et al. „A triple-imaging-modality system for simultaneous measurements of prompt gamma photons, prompt x-rays, and induced positrons during proton beam irradiation“. Physics in Medicine & Biology 69, Nr. 5 (22.02.2024): 055012. http://dx.doi.org/10.1088/1361-6560/ad25c6.

Der volle Inhalt der Quelle
Annotation:
Abstract Objective. Prompt gamma photon, prompt x-ray, and induced positron imaging are possible methods for observing a proton beam’s shape from outside the subject. However, since these three types of images have not been measured simultaneously nor compared using the same subject, their advantages and disadvantages remain unknown for imaging beam shapes in therapy. To clarify these points, we developed a triple-imaging-modality system to simultaneously measure prompt gamma photons, prompt x-rays, and induced positrons during proton beam irradiation to a phantom. Approach. The developed triple-imaging-modality system consists of a gamma camera, an x-ray camera, and a dual-head positron emission tomography (PET) system. During 80 MeV proton beam irradiation to a polymethyl methacrylate (PMMA) phantom, imaging of prompt gamma photons was conducted by the developed gamma camera from one side of the phantom. Imaging of prompt x-rays was conducted by the developed x-ray camera from the other side. Induced positrons were measured by the developed dual-head PET system set on the upper and lower sides of the phantom. Main results. With the proposed triple-imaging-modality system, we could simultaneously image the prompt gamma photons and prompt x-rays during proton beam irradiation. Induced positron distributions could be measured after the irradiation by the PET system and the gamma camera. Among these imaging modalities, image quality was the best for the induced positrons measured by PET. The estimated ranges were actually similar to those imaged with prompt gamma photons, prompt x-rays and induced positrons measured by PET. Significance. The developed triple-imaging-modality system made possible to simultaneously measure the three different beam images. The system will contribute to increasing the data available for imaging in therapy and will contribute to better estimating the shapes or ranges of proton beam.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tian, B. B., B. Jiang, H. T. Jing und M. F. Yan. „Monte Carlo simulation study of a novel neutron resonance radiography method for oxygen identification in oxides and composite materials“. Journal of Instrumentation 19, Nr. 09 (01.09.2024): T09002. http://dx.doi.org/10.1088/1748-0221/19/09/t09002.

Der volle Inhalt der Quelle
Annotation:
Abstract A novel imaging mode of neutron resonance radiography for the identification and mapping of oxygen element is firstly proposed based on the Back-n beamline at CSNS. The method utilizes a 10B-enriched conversion layer that converts transmitted neutrons to gamma rays. The emitted characteristic 478-keV prompt gamma rays are then collimated by a pinhole device and imaged. The energy-selective operation of transmitted neutrons via time-of-flight (TOF) measurement is performed by detecting 478-keV prompt gamma rays as a function of neutron TOF. This work shows the viability of the proposed imaging method for oxygen identification by Monte Carlo simulation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Uenomachi, Mizuki, Kenji Shimazoe und Hiroyuki Takahashi. „A double photon coincidence detection method for medical gamma-ray imaging“. Bio-Algorithms and Med-Systems 18, Nr. 1 (01.12.2022): 120–26. http://dx.doi.org/10.2478/bioal-2022-0080.

Der volle Inhalt der Quelle
Annotation:
Abstract Cascade nuclides emit two or more gamma rays successively through an intermediate state. The coincidence detection of cascade gamma rays provides several advantages in gamma-ray imaging. In this review article, three applications of the double photon coincidence method are reviewed. Double-photon emission imaging with mechanical collimators and Compton double-photon emission imaging can identify radioactive source positions with their angular-resolving detectors, and reduce the crosstalk between nuclides. In addition, a novel method of coincidence Compton imaging is proposed by taking coincidence detection between a Compton event and a photopeak events. Although this type of coincidence Compton imaging cannot specify the location, it can be useful in multi-nuclide Compton imaging.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

van der Marel, J., und B. Cederwall. „Collimatorless imaging of gamma rays with help of gamma-ray tracking“. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 471, Nr. 1-2 (September 2001): 276–80. http://dx.doi.org/10.1016/s0168-9002(01)01007-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sun, Y. K., H. T. Jing, B. B. Tian, X. L. Gao und X. Y. Yang. „Research on proton beam spot imaging based on pixelated gamma detector“. Journal of Instrumentation 17, Nr. 02 (01.02.2022): P02033. http://dx.doi.org/10.1088/1748-0221/17/02/p02033.

Der volle Inhalt der Quelle
Annotation:
Abstract The secondary particles from the spallation target of the China Spallation Neutron Source are mainly gammas and neutrons, which are related to the incident proton. The reconstruction of the proton beam spot could be implemented based on the distribution of the positions of secondary gammas or neutrons. The methods of pinhole imaging and Compton imaging are developed by measuring the position distribution of gammas based on the pixelated detector. The secondary gammas could be detected by the pixelated gamma detector directly. The neutron can be identified by detecting the characteristic (478 keV) γ-rays from the 10B(n, α) reactions. In order to detect secondary neutrons, a layer of 10B converter is added before the pixelated gamma detector. The pixelated gamma detector is sensitive to the characteristic (478 keV) γ-rays and then the neutron imaging could be achieved based on measuring the position distribution of the characteristic (478 keV) γ-rays.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Yamamoto, Seiichi, Tomohiro Yamashita, Yusuke Kobashi, Takuya Yabe, Takashi Akagi, Mitsutaka Yamaguchi, Naoki Kawachi et al. „Simultaneous imaging of prompt gamma photons and prompt X-rays during irradiation of proton beams to human torso phantom at clinical dose level“. Journal of Instrumentation 18, Nr. 07 (01.07.2023): P07046. http://dx.doi.org/10.1088/1748-0221/18/07/p07046.

Der volle Inhalt der Quelle
Annotation:
Abstract Although both prompt gamma photon and prompt X-ray imaging are promising methods for observing a beam shape and estimating the range of the beam from outside a subject, the images using these two methods have not been compared under realistic conditions such as in a human torso phantom. To clarify the imaging capability of prompt gamma photon and prompt X-ray imaging, simultaneous imaging with these methods was conducted during irradiation by proton beams to a human torso phantom at clinical dose level. After a human torso phantom was set on the bed of a proton therapy system, proton pencil beams of three different energies at clinical dose level and a patient planning beam for prostate cancer were used to irradiate the phantom. Prompt gamma photons and prompt X-rays emitted from the phantom were simultaneously imaged by a developed gamma camera and an X-ray camera during irradiation with proton beams to the human torso phantom. For all of the tested beams, we could obtain the beam shapes of prompt gamma photons and prompt X-rays images. The ranges could be estimated within a difference of 11 mm and 14 mm from the calculated dose for prompt gamma photon and prompt X-ray images, respectively. For both types of images, time sequential images and time count rate curves could be derived. We could clarify the imaging capabilities of prompt gamma photons and prompt X-rays were different by the simultaneous imaging during proton irradiation to a human torso phantom. Although both methods had advantages and disadvantages, we confirmed that both methods are promising for beam imaging in a torso phantom and also for future clinical use in proton therapy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Li, Y., P. Gong, X. Tang, Z. Hu, P. Wang, F. Tian, S. Wu, M. Ye, C. Zhou und X. Zhu. „DOI correction for gamma ray energy reconstruction based on energy segment in 3D position-sensitive CdZnTe detectors“. Journal of Instrumentation 17, Nr. 03 (01.03.2022): T03004. http://dx.doi.org/10.1088/1748-0221/17/03/t03004.

Der volle Inhalt der Quelle
Annotation:
Abstract The amplitude of the induced signal in 3D CdZnTe detector depends on the depth of interaction (DOI). Therefore, calibrating the detector by using DOI correction technology plays a crucial role in improving the energy resolution of the detectors to gamma rays. The current DOI correction method focuses on the single energy gamma rays, and its application to multiple energy gamma-rays are not found. In this study, we propose an improved energy correction algorithm with excellent correction results in the multiple energy gamma-ray detection. In the experiment, the DOI correction factors of a CdZnTe detector under different energies are discussed. The energy resolution and peak height of multiple energy peaks in the energy spectrum are significantly improved by using the segment energy correction method. We also extend the DOI correction method to the gamma detectors used in the Compton imaging, and the influence of this method on the Compton imaging quality is also discussed. For a single 60Co point source, the intrinsic efficiency increases from 6.5‰ to 8.3‰.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Gamma-rays imaging"

1

Wild, Walter James. „Gamma-ray imaging probes“. Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184331.

Der volle Inhalt der Quelle
Annotation:
External nuclear medicine diagnostic imaging of early primary and metastatic lung cancer tumors is difficult due to the poor sensitivity and resolution of existing gamma cameras. Nonimaging counting detectors used for internal tumor detection give ambiguous results because distant background variations are difficult to discriminate from neighboring tumor sites. This suggests that an internal imaging nuclear medicine probe, particularly an esophageal probe, may be advantageously used to detect small tumors because of the ability to discriminate against background variations and the capability to get close to sites neighboring the esophagus. The design, theory of operation, preliminary bench tests, characterization of noise behavior and optimization of such an imaging probe is the central theme of this work. The central concept lies in the representation of the aperture shell by a sequence of binary digits. This, coupled with the mode of operation which is data encoding within an axial slice of space, leads to the fundamental imaging equation in which the coding operation is conveniently described by a circulant matrix operator. The coding/decoding process is a classic coded-aperture problem, and various estimators to achieve decoding are discussed. Some estimators require a priori information about the object (or object class) being imaged; the only unbiased estimator that does not impose this requirement is the simple inverse-matrix operator. The effects of noise on the estimate (or reconstruction) is discussed for general noise models and various codes/decoding operators. The choice of an optimal aperture for detector count times of clinical relevance is examined using a statistical class-separability formalism.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Fontana, Cristiano Lino. „An Imaging Camera for Biomedical Application Based on Compton Scattering of Gamma Rays“. Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3423412.

Der volle Inhalt der Quelle
Annotation:
In this thesis we present the R&D of a Compton Camera (CC) for small object imaging. The CC concept requires two detectors to obtain the incoming direction of the gamma ray. This approach, sometimes named ``Electronic Collimation,'' differs from the usual technique that employs collimators for physically selecting gamma-rays of a given direction. This solution offers the advantage of much greater sensitivity and hence smaller doses. We propose a novel design, which uses two similar Position Sensitive Photomultipliers (Hamamatsu 8500) coupled to different scintillators (one plastic and one inorganic). Assets of just one kind of detector are the simplicity of design and operation. Along the experimental apparatus we present our original algorithm for image reconstruction, that was tested with a Geant4 Monte Carlo code. Employed on experimental data, we obtained a resolution of 6 mm, which is suitable for small animal imaging (such as rats or rabbits) and for small human organs imaging (thyroid and prostate). The prototype was designed to be a compact modular element that can be extended placing more similar detectors side by side
In questa tesi presentiamo il lavoro di ricerca e sviluppo di una Camera Compton (CC) per imaging di piccoli oggetti. Le CC richiedono l'utilizzo di due rivelatori per ottenere la direzione d'incidenza di raggi gamma. Questo approccio, talvolta chiamato ``Collimazione Elettronica,'' si differenzia dalle tecniche usuali che utilizzano collimatori per selezionare fisicamente i raggi gamma di una certa direzione. Questa soluzione offre il vantaggio di una sensibilità maggiore e quindi di dosi inferiori. Proponiamo qui un nuovo sistema, che usa due similari Fotomoltiplicatori sensibili alla posizione (Hamamatsu 8500) accoppiati a differenti scintillatori (uno in plastica ed uno inorganico). Avere un solo tipo di rivelatore comporta una maggiore semplicità di progettazione ed utilizzo. Assieme all'apparato sperimentale, presentiamo il nostro algoritmo originale per la ricostruzione d'immagini, che è stato testato con un codice Monte Carlo scritto con Geant4. Applicando l'algoritmo ai dati sperimentali, abbiamo ottenuto una risoluzione di 6 mm, che è adatta all'imaging di piccoli animali (quali ratti e conigli) e per piccoli organi umani (tiroide e prostata). Il prototipo è stato sviluppato per per essere un elemento modulare compatto, che può essere esteso affiancando altri rivelatori simili
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rowell, Gavin Peter. „A search for very high energy gamma rays from PSR1706-44 using the Atmospheric Cerenkov Imaging Technique /“. Title page, contents and abstract only, 1995. http://web4.library.adelaide.edu.au/theses/09PH/09phr8808.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Golnik, Christian. „Treatment verification in proton therapy based on the detection of prompt gamma-rays“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-227948.

Der volle Inhalt der Quelle
Annotation:
Background The finite range of a proton beam in tissue and the corresponding steep distal dose gradient near the end of the particle track open new vistas for the delivery of a highly target-conformal dose distribution in radiation therapy. Compared to a classical photon treatment, the potential therapeutic benefit of a particle treatment is a significant dose reduction in the tumor-surrounding tissue at a comparable dose level applied to the tumor. Motivation The actually applied particle range, and therefor the dose deposition in the target volume, is quite sensitive to the tissue composition in the path of the protons. Particle treatments are planned via computed tomography images, acquired prior to the treatment. The conversion from photon stopping power to proton stopping power induces an important source of range-uncertainty. Furthermore, anatomical deviations from planning situation affect the accurate dose deposition. Since there is no clinical routine measurement of the actually applied particle range, treatments are currently planned to be robust in favor of optimal regarding the dose delivery. Robust planning incorporates the application of safety margins around the tumor volume as well as the usage of (potentially) unfavorable field directions. These pretreatment safety procedures aim to secure dose conformality in the tumor volume, however at the price of additional dose to the surrounding tissue. As a result, the unverified particle range constraints the principle benefit of proton therapy. An on-line, in-vivo range-verification would therefore bring the potential of particle therapy much closer to the daily clinical routine. Materials and methods This work contributes to the field of in-vivo treatment verification by the methodical investigation of range assessment via the detection of prompt gamma-rays, a side product emitted due to proton-tissue interaction. In the first part, the concept of measuring the spatial prompt gamma-ray emission profile with a Compton camera is investigated with a prototype system consisting of a CdZnTe cross strip detector as scatter plane and three side-by-side arranged, segmented BGO block detectors as absorber planes. In the second part, the novel method of prompt gamma-ray timing (PGT) is introduced. This technique has been developed in the scope of this work and a patent has been applied for. The necessary physical considerations for PGT are outlined and the feasibility of the method is supported with first proof-of-principle experiments. Results Compton camera: Utilizing a 22-Na source, the feasibility of reconstructing the emission scene of a point source at 1.275 MeV was verified. Suitable filters on the scatter-absorber coincident timing and the respective sum energy were defined and applied to the data. The source position and corresponding source displacements could be verified in the reconstructed Compton images. In a next step, a Compton imaging test at 4.44 MeV photon energy was performed. A suitable test setup was identified at the Tandetron accelerator at the Helmholtz-Zentrum Dresden-Rossendorf, Germany. This measurement setup provided a monoenergetic, point-like source of 4.44 MeV gamma-rays, that was nearly free of background. Here, the absolute gamma-ray yield was determined. The Compton imaging prototype was tested at the Tandetron regarding (i) the energy resolution, timing resolution, and spatial resolution of the individual detectors, (ii) the imaging capabilities of the prototype at 4.44 MeV gamma-ray energy and (iii) the Compton imaging efficiency. In a Compton imaging test, the source position and the corresponding source displacements were verified in the reconstructed Compton images. Furthermore, via the quantitative gamma-ray emission yield, the Compton imaging efficiency at 4.44 MeV photon energy was determined experimentally. PGT: The concept of PGT was developed and introduced to the scientific community in the scope of this thesis. A theoretical model for PGT was developed and outlined. Based on the theoretical considerations, a Monte Carlo (MC) algorithm, capable of simulating PGT distributions was implemented. At the KVI-CART proton beam line in Groningen, The Netherlands, time-resolved prompt gamma-ray spectra were recorded with a small scale, scintillator based detection system. The recorded data were analyzed in the scope of PGT and compared to the measured data, yielding in an excellent agreement and thus verifying the developed theoretical basis. For a hypothetical PGT imaging setup at a therapeutic proton beam it was shown, that the statistical error on the range determination could be reduced to 5 mm at a 90 % confidence level for a single spot of 5x10E8 protons. Conclusion Compton imaging and PGT were investigated as candidates for treatment verification, based on the detection of prompt gamma-rays. The feasibility of Compton imaging at photon energies of several MeV was proven, which supports the approach of imaging high energetic prompt $gamma$-rays. However, the applicability of a Compton camera under therapeutic conditions was found to be questionable, due to (i) the low device detection efficiency and the corresponding limited number of valid events, that can be recorded within a single treatment and utilized for image reconstruction, and (ii) the complexity of the detector setup and attached readout electronics, which make the development of a clinical prototype expensive and time consuming. PGT is based on a simple time-spectroscopic measurement approach. The collimation-less detection principle implies a high detection efficiency compared to the Compton camera. The promising results on the applicability under treatment conditions and the simplicity of the detector setup qualify PGT as method well suited for a fast translation towards a clinical trial
Hintergrund Strahlentherapie ist eine wichtige Modalität der therapeutischen Behandlung von Krebs. Das Ziel dieser Behandlungsform ist die Applikation einer bestimmten Strahlendosis im Tumorvolumen, wobei umliegendes, gesundes Gewebe nach Möglichkeit geschont werden soll. Bei der Bestrahlung mit einem hochenergetischen Protonenstrahl erlaubt die wohldefinierte Reichweite der Teilchen im Gewebe, in Kombination mit dem steilen, distalen Dosisgradienten, eine hohe Tumor-Konformalität der deponierten Dosis. Verglichen mit der klassisch eingesetzten Behandlung mit Photonen ergibt sich für eine optimiert geplante Behandlung mit Protonen ein deutlich reduziertes Dosisnivau im den Tumor umgebenden Gewebe. Motivation Die tatsächlich applizierte Reichweite der Protonen im Körper, und somit auch die lokal deponierte Dosis, ist stark abhängig vom Bremsvermögen der Materie im Strahlengang der Protonen. Bestrahlungspläne werden mit Hilfe eines Computertomographen (CT) erstellt, wobei die CT Bilder vor der eigentlichen Behandlung aufgenommen werden. Ein CT misst allerdings lediglich den linearen Schwächungskoeffizienten für Photonen in der Einheit Hounsfield Units (HU). Die Ungenauigkeit in der Umrechnung von HU in Protonen-Bremsvermögen ist, unter anderem, eine wesentliche Ursache für die Unsicherheit über die tatsächliche Reichweite der Protonen im Körper des Patienten. Derzeit existiert keine routinemäßige Methode, um die applizierte Dosis oder auch die Protonenreichweite in-vivo und in Echtzeit zu bestimmen. Um das geplante Dosisniveau im Tumorvolumen trotz möglicher Reichweiteunterschiede zu gewährleisten, werden die Bestrahlungspläne für Protonen auf Robustheit optimiert, was zum Einen das geplante Dosisniveau im Tumorvolumen trotz auftretender Reichweiteveränderungen sicherstellen soll, zum Anderen aber auf Kosten der möglichen Dosiseinsparung im gesunden Gewebe geht. Zusammengefasst kann der Hauptvorteil einer Therapie mit Protonen wegen der Unsicherheit über die tatsächlich applizierte Reichweite nicht wirklich realisiert. Eine Methode zur Bestimmung der Reichweite in-vivo und in Echtzeit wäre daher von großem Nutzen, um das theoretische Potential der Protonentherapie auch in der praktisch ausschöpfen zu können. Material und Methoden In dieser Arbeit werden zwei Konzepte zur Messung prompter Gamma-Strahlung behandelt, welche potentiell zur Bestimmung der Reichweite der Protonen im Körper eingesetzt werden können. Prompte Gamma-Strahlung entsteht durch Proton-Atomkern-Kollision auf einer Zeitskala unterhalb von Picosekunden entlang des Strahlweges der Protonen im Gewebe. Aufgrund der prompten Emission ist diese Form der Sekundärstrahlung ein aussichtsreicher Kandidat für eine Bestrahlungs-Verifikation in Echtzeit. Zum Einen wird die Anwendbarkeit von Compton-Kameras anhand eines Prototyps untersucht. Dabei zielt die Messung auf die Rekonstruktion des örtlichen Emissionsprofils der prompten Gammas ab. Zum Zweiten wird eine, im Rahmen dieser Arbeit neu entwickelte Messmethode, das Prompt Gamma-Ray Timing (PGT), vorgestellt und international zum Patent angemeldet. Im Gegensatz zu bereits bekannten Ansätzen, verwendet PGT die endliche Flugzeit der Protonen durch das Gewebe und bestimmt zeitliche Emissionsprofile der prompten Gammas. Ergebnisse Compton Kamera: Die örtliche Emissionsverteilung einer punktförmigen 22-Na Quelle wurde wurde bei einer Photonenenergie von 1.275 MeV nachgewiesen. Dabei konnten sowohl die absolute Quellposition als auch laterale Verschiebungen der Quelle rekonstruiert werden. Da prompte Gamma-Strahlung Emissionsenergien von einigen MeV aufweist, wurde als nächster Schritt ein Bildrekonstruktionstest bei 4.44 MeV durchgeführt. Ein geeignetes Testsetup wurde am Tandetron Beschleuniger am Helmholtz-Zentrum Dresden-Rossendorf, Deutschland, identifiziert, wo eine monoenergetische, punktförmige Emissionverteilung von 4.44 MeV Photonen erzeugt werden konnte. Für die Detektoren des Prototyps wurden zum Einen die örtliche und zeitliche Auflösung sowie die Energieauflösungen untersucht. Zum Anderen wurde die Emissionsverteilung der erzeugten 4.44 MeV Quelle rekonstruiert und die zugehörige Effizienz des Prototyps experimentell bestimmt. PGT: Für das neu vorgeschlagene Messverfahren PGT wurden im Rahmen dieser Arbeit die theoretischen Grundlagen ausgearbeitet und dargestellt. Darauf basierend, wurde ein Monte Carlo (MC) Code entwickelt, welcher die Modellierung von PGT Spektren ermöglicht. Am Protonenstrahl des Kernfysisch Verschneller Institut (KVI), Groningen, Niederlande, wurden zeitaufgelöste Spektren prompter Gammastrahlung aufgenommen und analysiert. Durch einen Vergleich von experimentellen und modellierten Daten konnte die Gültigkeit der vorgelegten theoretischen Überlegungen quantitativ bestätigt werden. Anhand eines hypothetischen Bestrahlungsszenarios wurde gezeigt, dass der statistische Fehler in der Bestimmung der Reichweite mit einer Genauigkeit von 5 mm bei einem Konfidenzniveau von 90 % für einen einzelnen starken Spot 5x10E8 Protonen mit PGT erreichbar ist. Schlussfolgerungen Für den Compton Kamera Prototyp wurde gezeigt, dass eine Bildgebung für Gamma-Energien einiger MeV, wie sie bei prompter Gammastrahlung auftreten, möglich ist. Allerdings erlaubt die prinzipielle Abbildbarkeit noch keine Nutzbarkeit unter therapeutischen Strahlbedingungen nicht. Der wesentliche und in dieser Arbeit nachgewiesene Hinderungsgrund liegt in der niedrigen (gemessenen) Nachweiseffizienz, welche die Anzahl der validen Daten, die für die Bildrekonstruktion genutzt werden können, drastisch einschränkt. PGT basiert, im Gegensatz zur Compton Kamera, auf einem einfachen zeit-spektroskopischen Messaufbau. Die kollimatorfreie Messmethode erlaubt eine gute Nachweiseffizienz und kann somit den statistischen Fehler bei der Reichweitenbestimmung auf ein klinisch relevantes Niveau reduzieren. Die guten Ergebnissen und die ausgeführten Abschätzungen für therapeutische Bedingungen lassen erwarten, dass PGT als Grundlage für eine Bestrahlungsverifiktation in-vivo und in Echtzeit zügig klinisch umgesetzt werden kann
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jones, Martin. „The development of a Compton camera for the imaging of gamma rays in the energy range 0.662 MeV to 6.130 MeV“. Thesis, University of Liverpool, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.632425.

Der volle Inhalt der Quelle
Annotation:
Experimental and GEANT4 simulated Compton camera images and results are presented. This thesis aims to assess the contrasting performance of two seperate detector configurations which include a two germanium Compton camera (GeGe) and a germanium caesium iodide (GeCsI) Compton camera. GEANT4 software has previously been validated. All images were reconstructed using an existsing image reconstruction algorithm which utilises a simple back projection method.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Watanabe, Shio. „Stereoscopic observations of TeV gamma-rays from the supernova remnant RX J0852.0-4622 with the CANGAROO-3 imaging air Cerenkov telescopes“. 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/136732.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Semenov, Evgenii. „Experimental studies and evaluation of the implementation of 3γ-imaging and the new technology of XEMIS cameras adapted to the control of MOX fuel“. Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0443.

Der volle Inhalt der Quelle
Annotation:
Le contrôle non destructif et l'imagerie par rayons γ sont largement utilisés dans l'industrie de production de combustible nucléaire et en médecine nucléaire. Cette thèse est centrée sur une nouvelle application d'un détecteur de pointe, basé sur une caméra au xénon liquide dont le champ de vue est 24 cm, XEMIS2. Cette caméra, construite à Nantes, en France, a été initialement conçue pour l’imagerie médicale à 3-gammas chez les petits animaux. Elle fait désormais l’objet d’une étude approfondie pour explorer la nouvelle application dans le contrôle non destructif et l’imagerie de pastilles ou de barres de combustible MOX à haute densité (> 10 g/cm³). Ils émettent un large spectre de rayons γ, ce qui constitue un objectif ambitieux et complexe. L'objectif principal de XEMIS2 est de réduire significativement la dose reçue par les patients lors d'un diagnostic médical par imagerie nucléaire tout en conservant la même qualité d'image que les cameras conventionnelles. Le spectre d'émission des rayons γ du combustible MOX a été étudié, et une activité élevée est attendue. Cependant, la région d'intérêt (ROI) des hautes énergies, sélectionnée pour ce travail, présente un défi en raison d'une statistique plus faible. Il a été démontré que d'autres ROI utilisées dans le contrôle gamma passif non destructif actuel rencontrent des difficultés en raison d'une forte auto-absorption des rayons γ. La thèse exposera deux méthodes développées et évaluées pour le contrôle du rapport Pu/(U+Pu) dans le MOX, incluant des contributions inédites aux algorithmes dans l’imagerie Compton
The non-destructive control and imaging with γ-rays are well-known widely used in nuclear fuel production industry and nuclear medicine, respectively. The thesis is centered on new application of a state-of-the-art detector, based on single-phase liquid xenon 24-cm long field-of-view camera, XEMIS2. It is constructed in Nantes, France. Originally conceived for small animal medical 3-gamma imaging, the camera is now being scrutinized to explore new area of its’ application in non-destructive control and imaging of high-density (> 10 g/cm3) MOX fuel pellets or rods that emit a wide spectrum of γ-rays, which is a quite relevant and ambitious goal. XEMIS2 main goal is a significant dose reduction per scan while preserving the same image quality as in conventionnal cameras. MOX fuel γ-rays emission spectrum was studied, and high activity is expected, but the useful high-energy region of interest (ROI) that was selected for this work presents a challenge due to small statistics. It was shown that other ROI used in current passive non-destructive gamma-scanning control face difficulties due to strong self-absorbtion of γ-rays. The thesis will expound on the two methods that were developed and assessed for MOX Pu/(U+Pu) ratio control, including new contributions to algorithms in Compton imaging
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Porelli, Andrea. „TAIGA-HiSCORE: a new wide-angle air Cherenkov detector for multi-TeV gamma-astronomy and cosmic ray physics“. Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21610.

Der volle Inhalt der Quelle
Annotation:
Der TAIGA Detektor (“Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy”) testet eine neue Nachweismethode der erdgebundenen Cherenkov Gamma Astronomie fuer 10TeV bis einige PeV, und fuer kosmische Strahlung oberhalb 100TeV: die Kombination abbildender und nicht-abbildender Cherenkov Detektoren in einem hybriden System. Im Fokus der Arbeit steht TAIGA-HiSCORE - ein Cherenkov Detektorfeld mit grosser Apertur zur Messung der Zeitstruktur der Cherenkovlichtfront in atmosphaerischen Luftschauern (EAS). Die Praezisonsvermessung der Schauerrichtung basiert auf (1) sub-nsec Zeitsynchronisation aller Detektoren, und (2) einer neuentwickelten Zeitkalibrationsmethode. Die Genauigkeit wird bestimmt mit experimentellen und simulierten EAS-Daten, spezieller LED-Kalibration und dem LIDAR Laserstrahl aus der International Space Station (ISS). Mit den HiSCORE9 Daten (2013-2014) wird die sub-nsec Zeitsynchronisation durch das White Rabbit Zeitsystem unter realen Bedingungen nachgewiesen. Eine neue, auch fuer grosse Cherenkov-Detektorfelder praktikable Zeitoffset-Kalibration aller Detektoren wurde entwickelt, und fuer HiSCORE28 (2015-2018) angewandt. Diese hybride Kalibration basiert auf EAS-Ereignissen und direkter LED-Kalibration fuer lediglich eine begrenzte Zahl von Detektoren. Die Genauigkeit der Luftschauer-Richtungsrekonstruktion wird ueber die “Schachbrett-Methode” MC-unabhaengig bestimmt zu 0.4° an der Energieschwelle (50TeV) und <= 0.2° fuer > 100TeV. Eine wichtige Zufallsentdeckung war mit HiSCORE28 moeglich: der Laser des ISS-CATS-Lidars wurde in richtungsrekonstruierten Daten von HiSCORE28 nachgewiesen. Mit den “ISS Ereignissen” gelang es, sowohl die Rekonstruktionsgenauigkeit von HiSCORE, als auch das “absolute pointing” zu messen (<=0.1°) - besonders wichtig, da eine starke Gamma-Quelle im Datensatz bisher nicht nachgewiesen wurde. Im Schlussteil der Arbeit wird ein Methode zur Punktquellensuche im gesamten Gesichtsfeld von TAIGA-HiSCORE vorgestellt.
The TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) detector is a new ground-based Cherenkov detection technology for gamma-astronomy from 10TeV up to several PeV, and cosmic rays (CR) above 100TeV. The main topic of this work is TAIGA-HiSCORE, the wide-aperture air Cherenkov timing array. The focus is on precision extensive air shower (EAS) arrival direction reconstruction, achieved by (1) sub-nsec time-synchronization between the array stations, and (2) a newly developed array time calibration procedure. The performance is verified using simulated and experimental data from EAS, dedicated LED calibration, and a LIDAR laser beam from the International Space Station (ISS). The analysis of the HiSCORE 9 data (2013-14), collected with a data acquisition system (DAQ) based on the White Rabbit (WR) timing system, allows to verify the sub-nsec time synchronization between the array stations. The analysis of HiSCORE 28 data (2015-2018) addresses the problem of achieving an easy-to-perform time calibration for large area ground-based Cherenkov array. A new "hybrid" calibration method is developed, which makes use of EAS data, and requires direct LED calibration of only a few array stations. The "chessboard" method is applied on the reconstructed data to obtain a MC-independent estimation of the detector angular resolution, found to be 0.4° at threshold (~50TeV) and <= 0.2° above 100TeV. A serendipitous discovery was made in this work: a signal from the CATS-LIDAR on-board the ISS was found in the HiSCORE 28 data. These "ISS-events" are used to verify the detector performance, in particular the absolute angular pointing (<= 0.1°), particularly important since a strong gamma point source has not yet been detected by the TAIGA-HiSCORE. The final part of the work presents a first preliminary approach to a wide aperture point source analysis, developed for the TAIGA-HiSCORE in stand-alone operation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ley, Jean-Luc. „Mise en oeuvre d’un démonstrateur de caméra Compton pour l’imagerie en médecine nucléaire et pour le contrôle en temps réel de l’hadronthérapie à l’aide des rayonnements gamma prompts“. Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10334/document.

Der volle Inhalt der Quelle
Annotation:
L'hadronthérapie est l'une des modalités disponibles pour traiter le cancer. Cette modalité utilise des ions légers (protons, ions carbone) pour détruire les cellules cancéreuses. De telles particules ont une précision balistique de par leur trajectoire quasi-rectiligne, leur parcours fini et le profil de dose maximum en fin de parcours, ce qui permet, par rapport à la radiothérapie conventionnelle, d'épargner les tissus sains situés à côté, en aval et en amont de la tumeur. L'un des enjeux de l'assurance qualité de cette modalité est le contrôle du positionnement de la dose déposée par les ions dans le patient. Une possibilité pour effectuer ce contrôle est d'observer les gammas prompts émis lors des réactions nucléaires induites le long du parcours des ions dans le patient. Un prototype de caméra Compton, permettant théoriquement de maximiser l'efficacité de détection des gammas prompts, est actuellement développé dans une collaboration régionale. Mon travail de thèse s'est axé autour de cette caméra et plus particulièrement sur les points suivants : i) étudier par les simulations Monte Carlo le fonctionnement du prototype en cours de construction, notamment en regard des taux de comptage attendus sur les différents types d'accélérateurs en hadronthérapie, ii) mener des études de simulation sur l'utilisation de cette caméra en imagerie clinique, iii) caractériser les détecteurs silicium du diffuseur, iv) confronter les simulations entreprises sur la réponse de la caméra avec des mesures sur faisceau à l'aide d'un démonstrateur. Il résulte que le prototype de caméra Compton développé rend possible un contrôle de la localisation du dépôt de dose en protonthérapie à l'échelle d'un spot, à condition que l'intensité clinique du faisceau de protons soit diminuée d'un facteur 200 (intensité de 108 protons/s). Une application de la caméra Compton en médecine nucléaire semble réalisable avec l'utilisation de radioisotopes d'énergie supérieure à 300 keV. Ces premiers résultats doivent être confirmés par des simulations plus réalistes (cibles de PMMA homogènes et hétérogènes). Des tests avec l'intégration progressive de tous les éléments de la caméra vont avoir lieu courant 2016
Hadrontherapy is one of the modalities available for treating cancer. This modality uses light ions (protons, carbon ions) to destroy cancer cells. Such particles have a ballistic accuracy thanks to their quasi-rectilinear trajectory, their path and the finished profile maximum dose in the end. Compared to conventional radiotherapy, this allows to spare the healthy tissue located adjacent downstream and upstream of the tumor. One of this modality’s quality assurance challenges is to control the positioning of the dose deposited by ions in the patient. One possibility to perform this control is to detect the prompt gammas emitted during nuclear reactions induced along the ion path in the patient. A Compton camera prototype, theoretically allowing to maximize the detection efficiency of the prompt gammas, is being developed under a regional collaboration. This camera was the main focus of my thesis, and particularly the following points : i) studying, throughout Monte Carlo simulations, the operation of the prototype in construction, particularly with respect to the expected counting rates on the different types of accelerators in hadrontherapy ii) conducting simulation studies on the use of this camera in clinical imaging, iii) characterising the silicon detectors (scatterer) iv) confronting Geant4 simulations on the camera’s response with measurements on the beam with the help of a demonstrator. As a result, the Compton camera prototype developed makes a control of the localization of the dose deposition in proton therapy to the scale of a spot possible, provided that the intensity of the clinical proton beam is reduced by a factor 200 (intensity of 108 protons / s). An application of the Compton camera in nuclear medicine seems to be attainable with the use of radioisotopes of an energy greater than 300 keV. These initial results must be confirmed by more realistic simulations (homogeneous and heterogeneous PMMA targets). Tests with the progressive integration of all camera elements will take place during 2016
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Solovov, Vladimir Nikolaevitch. „Detection of gamma-rays in liquid xenon for medical imaging“. Doctoral thesis, 2003. http://hdl.handle.net/10316/1844.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Gamma-rays imaging"

1

Hailey, J. R. Application of scanning and imaging techniques to assess decay and wood quality in logs and standing trees. [Ottawa, Ont: Forestry Canada, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

M, Carpenter John, Society of Photo-Optical Instrumentation Engineers. und Federal Aviation Administration Technical Center (U.S.). Aviation Security Research & Development Service., Hrsg. Neutrons, x-rays, and gamma rays: Imaging detectors, material characterization techniques, and applications, 21-22 July 1992, San Diego, California. Bellingham, WA: SPIE, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

United States. National Aeronautics and Space Administration., Hrsg. Background due to cosmic protons in gamma-ray telescopes. Stanford, Calif: Stanford University, W.W. Hansen Experimental Physics Laboratory, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chʻoe, Chae-gŏl. Haek ŭihak yŏngsang kigi chŏngdo kwalli siltʻae chosa yŏnʼgu =: Study for status of quality control of nuclear medicine imaging equipments : gamma camera, SPECT, and PET. [Seoul]: Sikpʻum Ŭiyakpʻum Anjŏnchʻŏng, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Protection, United States Bureau of Customs and Border. Environmental assessment for Gamma Imaging Inspection System: Port of San Francisco, San Francisco County, California : draft report. [United States]: U. S. Customs and Border Protection, Technology Solutions Program Office, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

United States. Bureau of Customs and Border Protection. Environmental assessment for Gamma Imaging Inspection System: Port of San Francisco, San Francisco County, California : final report. Washington, DC: U. S. Customs and Border Protection, Technology Solutions Program Office, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Press, Radieago. World Radiography Day: November 8th - X-Ray Day - Radiation - Roentgen - Medical Professional - CT Scan - Gamma Rays - Scientist - Sports Imaging - Patients - Treatment. Independently Published, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Press, Radieago. World Radiology Day: November 8th | X-Ray Day | Radiation | Roentgen | Medical Professional | CT Scan | Gamma Rays | Scientist | Sports Imaging | Athletes | Yes The Table is Cold. Independently Published, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Press, Radieago. Radiologists See Right Through You: World Radiation Day November 8th - X-Ray Day - Radiation - Roentgen - Medical Professional - CT Scan - Gamma Rays - Scientist - Sports - Rad Technician - Sports Imaging. Independently Published, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Gamma-rays imaging"

1

Saint-Hilaire, Pascal, Albert Y. Shih, Gordon J. Hurford und Brian Dennis. „Grid-Based Imaging of X-rays and Gamma Rays with High Angular Resolution“. In Handbook of X-ray and Gamma-ray Astrophysics, 1783–816. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-19-6960-7_170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Saint-Hilaire, Pascal, Albert Y. Shih, Gordon J. Hurford und Brian Dennis. „Grid-Based Imaging of X-rays and Gamma Rays with High Angular Resolution“. In Handbook of X-ray and Gamma-ray Astrophysics, 1–34. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4544-0_170-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Montanari, Alessandro, und Emmanuel Moulin. „Framework for Indirect Dark Matter Search with Gamma Rays“. In Searching for Dark Matter with Imaging Atmospheric Cherenkov Telescopes, 41–65. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-66470-0_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dean, A. J. „Integral — Fine Spectroscopy and Fine Imaging of Celestial Gamma-Rays“. In Astrophysics and Space Science Library, 475–86. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0794-5_46.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Crannell, C. J. „Imaging Solar Flares in Hard X Rays and Gamma Rays from Balloon-Borne Platforms“. In Solar System Plasma Physics, 203–7. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm054p0203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Smither, Robert K., Patricia B. Fernandez, Timothy Graber, Peter von Ballmoos, Juan Naya, Francis Albernhe, G. Vedrenne und Mohamed Faiz. „Review of Crystal Diffraction and its Application to Focusing Energetic Gamma Rays“. In Imaging in High Energy Astronomy, 47–56. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0407-4_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bolotnikov, Aleksey E., und Ralph B. James. „Position-Sensitive Virtual Frisch-Grid Detectors for Imaging and Spectroscopy of Gamma Rays“. In Radiation Detection Systems, 103–40. 2. Aufl. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003147633-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bolotnikov, Aleksey E., und Ralph B. James. „Position-Sensitive Virtual Frisch-Grid Detectors for Imaging and Spectroscopy of Gamma Rays“. In Radiation Detection Systems, 103–40. 2. Aufl. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003219446-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hayes, Laura A., Sophie Musset, Daniel Müller und Säm Krucker. „The Spectrometer Telescope for Imaging X-Rays (STIX) on Solar Orbiter“. In Handbook of X-ray and Gamma-ray Astrophysics, 1–18. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4544-0_168-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hayes, Laura A., Sophie Musset, Daniel Müller und Säm Krucker. „The Spectrometer Telescope for Imaging X-rays (STIX) on Solar Orbiter“. In Handbook of X-ray and Gamma-ray Astrophysics, 1391–408. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-19-6960-7_168.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Gamma-rays imaging"

1

Sagawa, N., Y. Morishita, M. Fujisawa, S. Kurosawa, M. Sasano und M. Hayashi. „Visualization of alpha rays using a qCMOS camera and evaluation of the effects of beta rays, gamma rays, and neutrons on its camera“. In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10656234.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mohammadi, A. Hamato, H. Tashima, Y. Iwao, C. Toramatsu, K. Parodi und T. Yamaya. „Range verification in carbon ion therapy: Compton imaging of 718 keV gamma-rays“. In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10655339.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kamada, K., M. Yoshino, T. Horiai, K. J. Kim, N. Kutsuzawa, Y. Shoji, K. Nagai et al. „Material Design of Eutectic Scintillators for Discrimination of Thermal Neutrons and Gamma-rays“. In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10657637.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Morishita, Y., T. Yamada, T. Nakasone, M. Kanno, M. Sasaki, Y. Sanada und T. Torii. „A detection technique for low-energy gamma rays from alpha emitters in background radiation environment“. In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10656110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Curado Da Silva, R. M., J. M. Maia, J. R. Campos, G. Falcão, F. Pinheiro, M. Abreu, M. Caine et al. „THOR-SR: TGF and High-energy astrophysics Observatory for gamma-Rays on board the Space Rider“. In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10655687.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kurosawa, S., Q. Verdeyen, M. Smuda, A. Yamaji, T. Torii und K. Watanabe. „Feasibility Study on the Discrimination of the Gamma Rays and Other Particles from the Thunderclouds and Lightnings with NaI:Tl Scintillator“. In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10655625.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hailey, Charles J., Klaus P. Ziock, Fiona A. Harrison und Judith Fleischmann. „Imaging germanium telescope array for gamma-rays (IGETAGRAY)“. In High−Energy Astrophysics in the 21st Century. AIP, 1990. http://dx.doi.org/10.1063/1.39687.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Xie, Hongwei, Faqiang Zhang, Jianhua Zhang, Jinchuan Chen, Dingyang Chen und Linbo Li. „Analysis of noise power spectrum of gamma rays camera“. In IS&T/SPIE Electronic Imaging, herausgegeben von Sophie Triantaphillidou und Mohamed-Chaker Larabi. SPIE, 2014. http://dx.doi.org/10.1117/12.2035275.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Barrett, H. H. „Quantum Limits in Gamma-Ray Imaging“. In Quantum-Limited Imaging and Image Processing. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/qlip.1986.tua1.

Der volle Inhalt der Quelle
Annotation:
Gamma-ray and X-ray imaging systems are required in many fields, including astronomy, industrial radiography, nuclear medicine and reactor safety research. Because hard X rays and gamma rays cannot be efficiently reflected or refracted, rather crude imaging systems are required, often with the result that very few photons are detected. Quantum noise is thus almost always the limiting factor in system performance. Nevertheless, there is considerable debate in the literature about how to specify and quantify these quantum limits. Widely differing conclusions are reached by different authors on questions such as: When is a pinhole preferable to a coded aperture in imaging a particular object? It is the goal of this paper to show that these discrepancies disappear when one carefully specifies the nature of the imaging system, the object or class of objects to be studied, the nature of any a priori information about the object, and the purpose of the imaging procedure. When the problem to be solved is thus carefully stated, general procedures can be given for quantifying the quantum limits to system performance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Egarievwe, Stephen U., Eric D. Lukosi, Mebougna L. Drabo, Ifechukwude O. Okwechime, Oghaghare K. Okobiah, Aaron L. Adams, Anwar Hossain, Utpal N. Roy, Rubi Gul und Ralph B. James. „Surface passivation and contacts in CdZnTe X-rays and gamma-rays detectors“. In 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD). IEEE, 2016. http://dx.doi.org/10.1109/nssmic.2016.8069954.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Gamma-rays imaging"

1

Kroeger, R. A., W. N. Johnson, R. L. Kinzer, J. D. Kurfess, S. E. Inderhees, B. Phlips, N. Gehrels und B. Graham. Spatial Resolution and Imaging of Gamma-Rays with Germanium Strip Detectors. Fort Belvoir, VA: Defense Technical Information Center, Januar 1995. http://dx.doi.org/10.21236/ada462288.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Barty, C., D. Gibson, F. Albert, S. Anderson, G. Anderson, S. Betts, R. Berry et al. Active Detection and Imaging of Nuclear Materials with High-Brightness Gamma Rays. Office of Scientific and Technical Information (OSTI), Februar 2009. http://dx.doi.org/10.2172/948985.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Martin, Jeffrey Basil. A Compton scatter camera for spectral imaging of 0.5 to 3.0 MeV gamma rays. Office of Scientific and Technical Information (OSTI), Januar 1994. http://dx.doi.org/10.2172/167186.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie