Auswahl der wissenschaftlichen Literatur zum Thema „Gallium nitride“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Gallium nitride" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Gallium nitride":

1

Sarkar, Sujoy, und S. Sampath. „Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control“. Chemical Communications 52, Nr. 38 (2016): 6407–10. http://dx.doi.org/10.1039/c6cc02487d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control.
2

Dobrynin, A. V., M. M. Sletov und V. V. Smirnov. „Luminescent properties of gallium nitride and gallium-aluminum nitride“. Journal of Applied Spectroscopy 55, Nr. 5 (November 1991): 1169–71. http://dx.doi.org/10.1007/bf00658419.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rajan, Siddharth, und Debdeep Jena. „Gallium nitride electronics“. Semiconductor Science and Technology 28, Nr. 7 (21.06.2013): 070301. http://dx.doi.org/10.1088/0268-1242/28/7/070301.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Al-Zuhairi, Omar, Ahmad Shuhaimi, Nafarizal Nayan, Adreen Azman, Anas Kamarudzaman, Omar Alobaidi, Mustafa Ghanim, Estabraq T. Abdullah und Yong Zhu. „Non-Polar Gallium Nitride for Photodetection Applications: A Systematic Review“. Coatings 12, Nr. 2 (18.02.2022): 275. http://dx.doi.org/10.3390/coatings12020275.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Ultraviolet photodetectors have been widely utilized in several applications, such as advanced communication, ozone sensing, air purification, flame detection, etc. Gallium nitride and its compound semiconductors have been promising candidates in photodetection applications. Unlike polar gallium nitride-based optoelectronics, non-polar gallium nitride-based optoelectronics have gained huge attention due to the piezoelectric and spontaneous polarization effect–induced quantum confined-stark effect being eliminated. In turn, non-polar gallium nitride-based photodetectors portray higher efficiency and faster response compared to the polar growth direction. To date, however, a systematic literature review of non-polar gallium nitride-based photodetectors has yet to be demonstrated. Hence, the objective of this systematic literature review is to critically analyze the data related to non-polar gallium nitride-based photodetectors. Based on the pool of literature, three categories are introduced, namely, growth and fabrication, electrical properties, and structural, morphological, and optical properties. In addition, bibliometric analysis, a precise open-source tool, was used to conduct a comprehensive science mapping analysis of non-polar gallium nitride-based photodetectors. Finally, challenges, motivations, and future opportunities of non-polar gallium nitride-based photodetectors are presented. The future opportunities of non-polar GaN-based photodetectors in terms of growth conditions, fabrication, and characterization are also presented. This systematic literature review can provide initial reading material for researchers and industries working on non-polar gallium nitride-based photodetectors.
5

Kochuev, D. A., A. S. Chernikov, R. V. Chkalov, A. V. Prokhorov und K. S. Khorkov. „Deposition of GaN nanoparticles on the surface of a copper film under the action of electrostatic field during the femtosecond laser ablation synthesis in ammonia environment“. Journal of Physics: Conference Series 2131, Nr. 5 (01.12.2021): 052089. http://dx.doi.org/10.1088/1742-6596/2131/5/052089.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract In this article, we show the possibility for obtaining and deposition of gallium nitride nanoparticles under the action of femtosecond laser radiation. Using the developed setup for thermal vacuum deposition of copper on silicon plates, we obtained the thin-film substrates following by the deposition of gallium nitride on them. The gallium nitride was formed by applying the femtosecond laser radiation to the gallium targets in ammonia medium. The controlled collection of ablation products following by their removal from the processing area by means of electrostatic field was used in the setup in order to efficiently collect gallium nitride nanoparticles. The formation of gallium nitride nanoparticles is verified by the results of X-ray diffraction analysis.
6

Mendes, Marco, Jeffrey Sercel, Mathew Hannon, Cristian Porneala, Xiangyang Song, Jie Fu und Rouzbeh Sarrafi. „Advanced Laser Scribing for Emerging LED Materials“. Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2011, DPC (01.01.2011): 001443–71. http://dx.doi.org/10.4071/2011dpc-wa32.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Lasers are becoming increasingly important in today's LED revolution and are essential for increasing the efficiency and reducing manufacturing cost of LEDs. Diode pumped solid state lasers excel in scribing horizontal type LEDs on sapphire, silicon, silicon carbide, III-nitrides (gallium nitride and aluminum nitride), as well as III-V semiconductors (gallium arsenide, gallium phosphide). These lasers are also used for dicing vertical type LEDs, which are becoming increasingly more important, often using high thermal conductivity metallic substrates such as copper, CuW and molybdenum. In this paper we will discuss some of the recent laser scribing/dicing techniques and how adequate selection of laser parameters and beam delivery optics allows for a high quality high throughput singulation process for the various materials listed above.
7

McLaurin, M., B. Haskell, S. Nakamura und J. S. Speck. „Gallium adsorption onto (112̄0) gallium nitride surfaces“. Journal of Applied Physics 96, Nr. 1 (Juli 2004): 327–34. http://dx.doi.org/10.1063/1.1759086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Assali, Lucy V. C., W. V. M. Machado und João F. Justo. „Manganese Impurity in Boron Nitride and Gallium Nitride“. Materials Science Forum 483-485 (Mai 2005): 1047–50. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.1047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We carried out a theoretical investigation on the properties of manganese impurity centers in cubic boron and gallium nitrides. The calculations were performed using the all electron spin-polarized full-potential linearized augmented plane wave methodology. Our results indicate that manganese in boron nitride, in a neutral charge state, is energetically more favorable in a divacancy site as compared to a substitutional cation site. We present the results on stability, spin states, impurity magnetic moment, hyperfine parameters, and formation and transition energies of manganese at the divacancy site in several charge states.
9

Koratkar, Nikhil A. „Two-dimensional gallium nitride“. Nature Materials 15, Nr. 11 (29.08.2016): 1153–54. http://dx.doi.org/10.1038/nmat4740.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Seo, Hee Won, Seung Yong Bae, Jeunghee Park, Hyunik Yang, Kwang Soo Park und Sangsig Kim. „Strained gallium nitride nanowires“. Journal of Chemical Physics 116, Nr. 21 (Juni 2002): 9492–99. http://dx.doi.org/10.1063/1.1475748.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Gallium nitride":

1

Li, Ting. „Gallium nitride and aluminum gallium nitride-based ultraviolet photodetectors /“. Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Muensit, Supasarote. „Piezoelectric coefficients of gallium arsenide, gallium nitride and aluminium nitride“. Phd thesis, Australia : Macquarie University, 1999. http://hdl.handle.net/1959.14/36187.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
"1998"--T.p.
Thesis (PhD)--Macquarie University, School of Mathematics, Physics, Computing and Electronics, 1999.
Includes bibliographical references.
Introduction -- A Michelson interferometer for measurement of piezoelectric coefficients -- The piezoelectric coefficient of gallium arsenide -- Extensional piezoelectric coefficients of gallium nitrides and aluminium nitride -- Shear piezoelectric coefficients of gallium nitride and aluminium nitride -- Electrostriction in gallium nitride, aluminium nitride and gallium arsenide -- Summary and prognosis.
The present work represents the first use of the interferometric technique for determining the magnitude and sign of the piezoelectric coefficients of III-V compound semiconductors, in particular gallium arsenide (GaAs), gallium nitride (GaN), and aluminium nitride (AIN). The interferometer arrangement used in the present work was a Michelson interferometer, with the capability of achieving a resolution of 10⁻¹³ m. -- The samples used were of two types. The first were commercial wafers, with single crystal orientation. Both GaAs and GaN were obtained in this form. The second type of sample was polycrystalline thin films, grown in the semiconductor research laboratories at Macquarie University. GaN and AIN samples of this type were obtained. -- The d₁₄ coefficient of GaAs was measured by first measuring the d₃₃ value of a [111] oriented sample. This was then transformed to give the d₁₄ coefficient of the usual [001] oriented crystal. The value obtained for d₁₄ was (-2.7 ± 0.1) pmV⁻¹. This compares well with the most recent reported measurements of -2.69 pmV⁻¹. The significance of the measurement is that this represents the first time this coefficient has been measured using the inverse piezoelectric effect. -- For AIN and GaN samples, the present work also represents the first time their piezoelectric coefficients have been measured by interferometry. For GaN, this work presents the first reported measurements of the piezoelectric coefficients, and some of these results have recently been published by the (Muensit and Guy, 1998). The d₃₃ and d₃₁ coefficients for GaN were found to be (3.4 ± 0.1) pmV⁻¹ and (-1.7 ± 0.1) pmV⁻¹ respectively. Since these values were measured on a single crystal wafer and have been corrected for substrate clamping, the values should be a good measure of the true piezoelectric coefficients for bulk GaN. -- For AIN, the d₃₃ and d₃₁ coefficients were found to be (5.1 ± 0.2) pmV⁻¹, and (-2.6 ± 0.1) pmV⁻¹ respectively. Since these figures are measured on a polycrystalline sample it is quite probable that the values for bulk AIN would be somewhat higher.
The piezoelectric measurements indicate that the positive c axis in the nitride films points away from the substrate. The piezoelectric measurements provide a simple means for identifying the positive c axis direction. -- The interferometric technique has also been used to measure the shear piezoelectric coefficient d₁₅ for AIN and GaN. This work represents the first application of this technique to measure this particular coefficient. The d₁₅ coefficients for AIN and GaN were found to be (-3.6 ± 0.1) pmV⁻¹ and (-3.1 ± 0.1) pmV⁻¹ respectively. The value for AIN agrees reasonably well with the only reported value available in the literature of -4.08 pmV⁻¹. The value of this coefficient for GaN has not been measured. -- Some initial investigations into the phenomenon of electrostriction in the compound semiconductors were also performed. It appears that these materials have both a piezoelectric response and a significant electrostrictive response. For the polycrystalline GaN and AIN, the values of the M₃₃ coefficients are of the order of 10⁻¹⁸ m²V⁻². The commercial single crystal GaN and GaAs wafers display an asymmetric response which cannot be explained.
Mode of access: World Wide Web.
Various pagings ill
3

Mareš, Petr. „Depozice Ga a GaN nanostruktur na křemíkový a grafenový substrát“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231443.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Presented thesis is focused on the study of properties of Ga and GaN nanostructures on graphene. In the theoretical part of the thesis a problematics of graphene and GaN fabrication is discussed with a focus on the relation of Ga and GaN to graphene. The experimental part of the thesis deals with the depositions of Ga on transferred CVD-graphene on SiO2. The samples are analyzed by various methods (XPS, AFM, SEM, Raman spectroscopy, EDX). The properties of Ga on graphene are discussed with a focus on the surface enhanced Raman scattering effect. Furthermore, a deposition of Ga on exfoliated graphene and on graphene on a copper foil is described. GaN is fabricated by nitridation of the Ga structures on graphene. This process is illustrated by the XPS measurements of a distinct Ga peak and the graphene valence band during the process of nitridation.
4

Cheng, Chung-choi, und 鄭仲材. „Positron beam studies of fluorine implanted gallium nitride and aluminium gallium nitride“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43278577.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Cheng, Chung-choi. „Positron beam studies of fluorine implanted gallium nitride and aluminium gallium nitride“. Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43278577.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Popa, Laura C. „Gallium nitride MEMS resonators“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99296.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 187-206).
As a wide band-gap semiconductor, with large breakdown fields and saturation velocities, Gallium Nitride (GaN) has been increasingly used in high-power, high-frequency electronics and monolithic microwave integrated circuits (MMICs). At the same time, GaN also has excellent electromechanical properties, such as high acoustic velocities and low elastic losses. Together with a strong piezoelectric coupling, these qualities make GaN ideal for RF MEMS resonators. Hence, GaN technology offers a platform for the seamless integration of low-loss, piezoelectric RF MEMS resonators with high power, high frequency electronics. Monolithic integration of MEMS resonators with ICs would lead to reduced parasitics and matching constraints, enabling high-purity clocks and frequency-selective filters for signal processing and high-frequency wireless communications. This thesis highlights the physics and resonator design considerations that must be taken into account in a monolithically integrated solution. We then show devices that achieve the highest frequency-quality factor product in GaN resonators to date (1.56 x 1013). We also highlight several unique transduction mechanisms enabled by this technology, such as the ability to use the 2D electron gas (2DEG) channel of High Electron Mobility Transistors (HEMTs) as an electrode for transduction. This enables a unique out-of-line switching capability which allowed us to demonstrate the first DC switchable solid-state piezoelectric resonator. Finally, we discuss the benefits of using active HEMT sensing of the mechanical signal when scaling to GHz frequencies, which enabled the highest frequency lithographically defined resonance reported to date in GaN (3.5 GHz). These demonstrated features sh
by Laura C. Popa.
Ph. D.
7

Allums, Kimberly K. „Proton radiation and thermal stabilty [sic] of gallium nitride and gallium nitride devices“. [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0013123.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Holmes, Kenneth L. „Two-dimensional modeling of aluminum gallium nitride/gallium nitride high electron mobility transistor“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02Jun%5FHolmes.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Anderson, David Richard. „Phonon-limited electron transport in gallium nitride and gallium nitride-based heterostructures, 1760-1851“. Thesis, University of York, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jackson, Helen C. „Effect of variation of silicon nitride passivation layer on electron irradiated aluminum gallium nitride/gallium nitride HEMT structures“. Thesis, Air Force Institute of Technology, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3629786.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:

Silicon nitride passivation on AlGaN\GaN heterojunction devices can improve performance by reducing electron traps at the surface. This research studies the effect of displacement damage caused by 1 MeV electron irradiation as a function of the variation of passivation layer thickness and heterostructure layer variation on AlGaN/GaN HEMTs. The effects of passivation layer thickness are investigated at thicknesses of 0, 20, 50 and 120 nanometers on AlGaN\GaN test structures with either an AlN nucleation layer or a GaN cap structures which are then measured before and immediately after 1.0 MeV electron irradiation at fluences of 1016 cm-2. Hall system measurements are used to observe changes in mobility, carrier concentration and conductivity as a function of Si3N4 thickness. Models are developed that relate the device structure and passivation layer under 1 MeV radiation to the observed changes to the measured photoluminescence and deep level transient spectroscopy. A software model is developed to determine the production rate of defects from primary 1 MeV electrons that can be used for other energies and materials. The presence of either a 50 or 120 nm Si 3N4 passivation layer preserves the channel current for both and appears to be optimal for radiation hardness.

Bücher zum Thema "Gallium nitride":

1

Quay, Rüdiger. Gallium nitride electronics. Berlin: Springer, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

1922-, Pankove Jacques I., und Moustakas T. D, Hrsg. Gallium nitride (GaN). San Diego: Academic Press, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

1922-, Pankove Jacques I., Moustakas T. D und Willardson Robert K, Hrsg. Gallium nitride (GaN) II. San Diego: Academic Press, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Feenstra, Randall M., und Colin E. C. Wood, Hrsg. Porous Silicon Carbide and Gallium Nitride. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470751817.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ehrentraut, Dirk, Elke Meissner und Michal Bockowski, Hrsg. Technology of Gallium Nitride Crystal Growth. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04830-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ehrentraut, Dirk, Elke Meissner und Michal Bockowski. Technology of gallium nitride crystal growth. Heidelberg: Springer, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Michael, Shur, und Davis Robert F. 1942-, Hrsg. GaN-based materials and devices: Growth, fabrication, characterization and performance. Singapore: World Scientific, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chuan, Feng Zhe, Hrsg. III-nitride devices and nanoengineering. London: Imperial College Press, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

B, Gil, Hrsg. Low-dimensional nitride semiconductors. Oxford: Oxford University Press, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

International Conference on Nitride Semiconductors (4th 2001 Denver, Colo.). ICNS-4: Fourth International Conference on Nitride Semiconductors, Denver, Colorado, USA, 2001 : proceedings. Berlin: Wiley-VCH, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Gallium nitride":

1

Linares, R. C., und R. M. Ware. „Gallium Nitride“. In Inorganic Reactions and Methods, 202. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145227.ch146.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Di Paolo Emilio, Maurizio. „Gallium Nitride“. In GaN and SiC Power Devices, 35–47. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Schoonmaker, Richard C., Claudia E. Burton, J. Lundstrom und J. L. Margrave. „Gallium (III) Nitride“. In Inorganic Syntheses, 16–18. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132388.ch5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bin, Dong. „9 The Packaging Technologies for GaN HEMTs“. In Gallium Nitride Power Devices, 261–80. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315196626-10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Feenstra, R. M., und S. W. Hla. „2.3.7 GaN, Gallium Nitride“. In Physics of Solid Surfaces, 52–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kinski, Isabel, und Paul F. McMillan. „Gallium Nitride and Oxonitrides“. In Ceramics Science and Technology, 91–130. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631735.ch3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kinski, Isabel, und Paul F. McMillan. „Gallium Nitride and Oxonitrides“. In Ceramics Science and Technology, 91–130. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631940.ch15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chowdhury, Srabanti. „Vertical Gallium Nitride Technology“. In Power Electronics and Power Systems, 101–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43199-4_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Khandelwal, Sourabh. „Gallium Nitride Semiconductor Devices“. In Advanced SPICE Model for GaN HEMTs (ASM-HEMT), 1–8. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77730-2_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Behzad, Somayeh. „Two-Dimensional Gallium Nitride“. In 21st Century Nanoscience – A Handbook, 7–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429347290-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Gallium nitride":

1

Wu, Tsung Han, Zhe Chuan Feng, Fangfei Li, Chung Cherng Lin, Ian Ferguson, Ray Hua Horng, Weijie Lu, P. M. Champion und L. D. Ziegler. „Brillouin scattering studies of gallium nitride and Indium gallium nitride“. In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482346.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Praharaj, C. Jayant. „Gallium Nitride/ Boron Nitride/ Aluminum Gallium Nitride E-Mode High Electron Mobility Transistor Modeling“. In 2023 1st International Conference on Circuits, Power and Intelligent Systems (CCPIS). IEEE, 2023. http://dx.doi.org/10.1109/ccpis59145.2023.10291344.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

McGinn, Christine, Qingyuan Zeng, Keith Behrman, Vikrant Kumar und Ioannis Kymissis. „Fully transparent gallium nitride/indium gallium nitride LED as a position sensitive detector“. In Gallium Nitride Materials and Devices XIX, herausgegeben von Hadis Morkoç, Hiroshi Fujioka und Ulrich T. Schwarz. SPIE, 2024. http://dx.doi.org/10.1117/12.2692143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Martin, Kevin N. „European gallium nitride capability“. In 2015 IEEE International Radar Conference (RadarCon). IEEE, 2015. http://dx.doi.org/10.1109/radar.2015.7131004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Li, Changyi, Antonio Hurtado, Jeremy B. Wright, Huiwen Xu, Sheng Liu, Ting S. Luk, Igal Brener, Steven R. Brueck und George T. Wang. „Gallium Nitride Nanotube Lasers“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_si.2014.sw1g.3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sakr, Salam, Maria Tchernycheva, Juliette Mangeney, Elias Warde, Nathalie Isac, Lorenzo Rigutti, Raffaele Colombelli et al. „III-nitride intersubband photonics“. In Gallium Nitride Materials and Devices VII. SPIE, 2012. http://dx.doi.org/10.1117/12.900002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Davis, R. F., S. M. Bishop, S. Mita, R. Collazo, Z. J. Reitmeier und Z. Sitar. „Epitaxial Growth Of Gallium Nitride“. In PERSPECTIVES ON INORGANIC, ORGANIC, AND BIOLOGICAL CRYSTAL GROWTH: FROM FUNDAMENTALS TO APPLICATIONS: Basedon the lectures presented at the 13th International Summer School on Crystal Growth. AIP, 2007. http://dx.doi.org/10.1063/1.2751931.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Stassen, E., M. Pu, E. Semenova, E. Zavarin, W. Lundin und K. Yvind. „Highly Nonlinear Gallium Nitride Waveguides“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_si.2018.sth3i.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gauthier, Briere, und Patrice Genevet. „Gallium nitride free standing metasurfaces“. In 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086612.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sui, Jingyang, und Pei-Cheng Ku. „Gallium Nitride Based Tactile Sensors“. In CLEO: Applications and Technology. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_at.2017.atu1a.6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Gallium nitride":

1

Harris, J. S. Bulk Gallium Nitride Growth. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada353635.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Heikman, Sten J., und Umesh K. Mishra. System for Bulk Growth of Gallium Nitride. Vapor Phase Epitaxy of Gallium Nitride by Gallium Arc Evaporation. Fort Belvoir, VA: Defense Technical Information Center, März 2005. http://dx.doi.org/10.21236/ada464611.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Skowronski, M. Deposition of Gallium Nitride Epilayers by OMVPE. Fort Belvoir, VA: Defense Technical Information Center, Januar 1998. http://dx.doi.org/10.21236/ada337316.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jones, Kenneth A., Randy P. Tompkins, Michael A. Derenge, Kevin W. Kirchner, Iskander G. Batyrev und Shuai Zhou. Gallium Nitride (GaN) High Power Electronics (FY11). Fort Belvoir, VA: Defense Technical Information Center, Januar 2012. http://dx.doi.org/10.21236/ada556955.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Allen, N. Gallium Nitride Superjunction Transistor: Continued Funding Report. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1890078.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mitchell, Christine Charlotte. Defect reduction in gallium nitride using cantilever epitaxy. Office of Scientific and Technical Information (OSTI), August 2003. http://dx.doi.org/10.2172/918286.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Harris, H. M., J. Laskar und S. Nuttinck. Engineering Support for High Power Density Gallium Nitride Microwave Transistors. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2001. http://dx.doi.org/10.21236/ada397860.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

McHugo, S. A., J. Krueger und C. Kisielowski. Metallic impurities in gallium nitride grown by molecular beam epitaxy. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603696.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hite, Jennifer, Mark Twigg, Michael Mastro, Jr Freitas, Meyer Jaime, Vurgaftman Jerry, O'Connor Igor et al. Development of Periodically Oriented Gallium Nitride for Non-linear Optics. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada563315.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Patibandla, Nag, und Vivek Agrawal. Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices. Office of Scientific and Technical Information (OSTI), Dezember 2012. http://dx.doi.org/10.2172/1150624.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie