Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Gallium nitride“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Gallium nitride" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Gallium nitride"
Sarkar, Sujoy, und S. Sampath. „Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control“. Chemical Communications 52, Nr. 38 (2016): 6407–10. http://dx.doi.org/10.1039/c6cc02487d.
Der volle Inhalt der QuelleDobrynin, A. V., M. M. Sletov und V. V. Smirnov. „Luminescent properties of gallium nitride and gallium-aluminum nitride“. Journal of Applied Spectroscopy 55, Nr. 5 (November 1991): 1169–71. http://dx.doi.org/10.1007/bf00658419.
Der volle Inhalt der QuelleAl-Zuhairi, Omar, Ahmad Shuhaimi, Nafarizal Nayan, Adreen Azman, Anas Kamarudzaman, Omar Alobaidi, Mustafa Ghanim, Estabraq T. Abdullah und Yong Zhu. „Non-Polar Gallium Nitride for Photodetection Applications: A Systematic Review“. Coatings 12, Nr. 2 (18.02.2022): 275. http://dx.doi.org/10.3390/coatings12020275.
Der volle Inhalt der QuelleRajan, Siddharth, und Debdeep Jena. „Gallium nitride electronics“. Semiconductor Science and Technology 28, Nr. 7 (21.06.2013): 070301. http://dx.doi.org/10.1088/0268-1242/28/7/070301.
Der volle Inhalt der QuelleKochuev, D. A., A. S. Chernikov, R. V. Chkalov, A. V. Prokhorov und K. S. Khorkov. „Deposition of GaN nanoparticles on the surface of a copper film under the action of electrostatic field during the femtosecond laser ablation synthesis in ammonia environment“. Journal of Physics: Conference Series 2131, Nr. 5 (01.12.2021): 052089. http://dx.doi.org/10.1088/1742-6596/2131/5/052089.
Der volle Inhalt der QuelleMendes, Marco, Jeffrey Sercel, Mathew Hannon, Cristian Porneala, Xiangyang Song, Jie Fu und Rouzbeh Sarrafi. „Advanced Laser Scribing for Emerging LED Materials“. Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2011, DPC (01.01.2011): 001443–71. http://dx.doi.org/10.4071/2011dpc-wa32.
Der volle Inhalt der QuelleMcLaurin, M., B. Haskell, S. Nakamura und J. S. Speck. „Gallium adsorption onto (112̄0) gallium nitride surfaces“. Journal of Applied Physics 96, Nr. 1 (Juli 2004): 327–34. http://dx.doi.org/10.1063/1.1759086.
Der volle Inhalt der QuelleAssali, Lucy V. C., W. V. M. Machado und João F. Justo. „Manganese Impurity in Boron Nitride and Gallium Nitride“. Materials Science Forum 483-485 (Mai 2005): 1047–50. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.1047.
Der volle Inhalt der QuelleKang, Liping, Lingli Wang, Haiyan Wang, Xiaodong Zhang und Yongqiang Wang. „Preparation and Performance of Gallium Nitride Powders with Preferred Orientation“. MATEC Web of Conferences 142 (2018): 01009. http://dx.doi.org/10.1051/matecconf/201814201009.
Der volle Inhalt der QuelleVolcheck, V. S., M. S. Baranava und V. R. Stempitsky. „Thermal conductivity of wurtzite gallium nitride“. Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 67, Nr. 3 (08.10.2022): 285–97. http://dx.doi.org/10.29235/1561-8358-2022-67-3-285-297.
Der volle Inhalt der QuelleDissertationen zum Thema "Gallium nitride"
Li, Ting. „Gallium nitride and aluminum gallium nitride-based ultraviolet photodetectors /“. Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.
Der volle Inhalt der QuelleMuensit, Supasarote. „Piezoelectric coefficients of gallium arsenide, gallium nitride and aluminium nitride“. Phd thesis, Australia : Macquarie University, 1999. http://hdl.handle.net/1959.14/36187.
Der volle Inhalt der QuelleThesis (PhD)--Macquarie University, School of Mathematics, Physics, Computing and Electronics, 1999.
Includes bibliographical references.
Introduction -- A Michelson interferometer for measurement of piezoelectric coefficients -- The piezoelectric coefficient of gallium arsenide -- Extensional piezoelectric coefficients of gallium nitrides and aluminium nitride -- Shear piezoelectric coefficients of gallium nitride and aluminium nitride -- Electrostriction in gallium nitride, aluminium nitride and gallium arsenide -- Summary and prognosis.
The present work represents the first use of the interferometric technique for determining the magnitude and sign of the piezoelectric coefficients of III-V compound semiconductors, in particular gallium arsenide (GaAs), gallium nitride (GaN), and aluminium nitride (AIN). The interferometer arrangement used in the present work was a Michelson interferometer, with the capability of achieving a resolution of 10⁻¹³ m. -- The samples used were of two types. The first were commercial wafers, with single crystal orientation. Both GaAs and GaN were obtained in this form. The second type of sample was polycrystalline thin films, grown in the semiconductor research laboratories at Macquarie University. GaN and AIN samples of this type were obtained. -- The d₁₄ coefficient of GaAs was measured by first measuring the d₃₃ value of a [111] oriented sample. This was then transformed to give the d₁₄ coefficient of the usual [001] oriented crystal. The value obtained for d₁₄ was (-2.7 ± 0.1) pmV⁻¹. This compares well with the most recent reported measurements of -2.69 pmV⁻¹. The significance of the measurement is that this represents the first time this coefficient has been measured using the inverse piezoelectric effect. -- For AIN and GaN samples, the present work also represents the first time their piezoelectric coefficients have been measured by interferometry. For GaN, this work presents the first reported measurements of the piezoelectric coefficients, and some of these results have recently been published by the (Muensit and Guy, 1998). The d₃₃ and d₃₁ coefficients for GaN were found to be (3.4 ± 0.1) pmV⁻¹ and (-1.7 ± 0.1) pmV⁻¹ respectively. Since these values were measured on a single crystal wafer and have been corrected for substrate clamping, the values should be a good measure of the true piezoelectric coefficients for bulk GaN. -- For AIN, the d₃₃ and d₃₁ coefficients were found to be (5.1 ± 0.2) pmV⁻¹, and (-2.6 ± 0.1) pmV⁻¹ respectively. Since these figures are measured on a polycrystalline sample it is quite probable that the values for bulk AIN would be somewhat higher.
The piezoelectric measurements indicate that the positive c axis in the nitride films points away from the substrate. The piezoelectric measurements provide a simple means for identifying the positive c axis direction. -- The interferometric technique has also been used to measure the shear piezoelectric coefficient d₁₅ for AIN and GaN. This work represents the first application of this technique to measure this particular coefficient. The d₁₅ coefficients for AIN and GaN were found to be (-3.6 ± 0.1) pmV⁻¹ and (-3.1 ± 0.1) pmV⁻¹ respectively. The value for AIN agrees reasonably well with the only reported value available in the literature of -4.08 pmV⁻¹. The value of this coefficient for GaN has not been measured. -- Some initial investigations into the phenomenon of electrostriction in the compound semiconductors were also performed. It appears that these materials have both a piezoelectric response and a significant electrostrictive response. For the polycrystalline GaN and AIN, the values of the M₃₃ coefficients are of the order of 10⁻¹⁸ m²V⁻². The commercial single crystal GaN and GaAs wafers display an asymmetric response which cannot be explained.
Mode of access: World Wide Web.
Various pagings ill
Mareš, Petr. „Depozice Ga a GaN nanostruktur na křemíkový a grafenový substrát“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231443.
Der volle Inhalt der QuelleCheng, Chung-choi, und 鄭仲材. „Positron beam studies of fluorine implanted gallium nitride and aluminium gallium nitride“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43278577.
Der volle Inhalt der QuelleCheng, Chung-choi. „Positron beam studies of fluorine implanted gallium nitride and aluminium gallium nitride“. Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43278577.
Der volle Inhalt der QuellePopa, Laura C. „Gallium nitride MEMS resonators“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99296.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 187-206).
As a wide band-gap semiconductor, with large breakdown fields and saturation velocities, Gallium Nitride (GaN) has been increasingly used in high-power, high-frequency electronics and monolithic microwave integrated circuits (MMICs). At the same time, GaN also has excellent electromechanical properties, such as high acoustic velocities and low elastic losses. Together with a strong piezoelectric coupling, these qualities make GaN ideal for RF MEMS resonators. Hence, GaN technology offers a platform for the seamless integration of low-loss, piezoelectric RF MEMS resonators with high power, high frequency electronics. Monolithic integration of MEMS resonators with ICs would lead to reduced parasitics and matching constraints, enabling high-purity clocks and frequency-selective filters for signal processing and high-frequency wireless communications. This thesis highlights the physics and resonator design considerations that must be taken into account in a monolithically integrated solution. We then show devices that achieve the highest frequency-quality factor product in GaN resonators to date (1.56 x 1013). We also highlight several unique transduction mechanisms enabled by this technology, such as the ability to use the 2D electron gas (2DEG) channel of High Electron Mobility Transistors (HEMTs) as an electrode for transduction. This enables a unique out-of-line switching capability which allowed us to demonstrate the first DC switchable solid-state piezoelectric resonator. Finally, we discuss the benefits of using active HEMT sensing of the mechanical signal when scaling to GHz frequencies, which enabled the highest frequency lithographically defined resonance reported to date in GaN (3.5 GHz). These demonstrated features sh
by Laura C. Popa.
Ph. D.
Allums, Kimberly K. „Proton radiation and thermal stabilty [sic] of gallium nitride and gallium nitride devices“. [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0013123.
Der volle Inhalt der QuelleHolmes, Kenneth L. „Two-dimensional modeling of aluminum gallium nitride/gallium nitride high electron mobility transistor“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02Jun%5FHolmes.pdf.
Der volle Inhalt der QuelleAnderson, David Richard. „Phonon-limited electron transport in gallium nitride and gallium nitride-based heterostructures, 1760-1851“. Thesis, University of York, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270104.
Der volle Inhalt der QuelleJackson, Helen C. „Effect of variation of silicon nitride passivation layer on electron irradiated aluminum gallium nitride/gallium nitride HEMT structures“. Thesis, Air Force Institute of Technology, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3629786.
Der volle Inhalt der QuelleSilicon nitride passivation on AlGaN\GaN heterojunction devices can improve performance by reducing electron traps at the surface. This research studies the effect of displacement damage caused by 1 MeV electron irradiation as a function of the variation of passivation layer thickness and heterostructure layer variation on AlGaN/GaN HEMTs. The effects of passivation layer thickness are investigated at thicknesses of 0, 20, 50 and 120 nanometers on AlGaN\GaN test structures with either an AlN nucleation layer or a GaN cap structures which are then measured before and immediately after 1.0 MeV electron irradiation at fluences of 1016 cm-2. Hall system measurements are used to observe changes in mobility, carrier concentration and conductivity as a function of Si3N4 thickness. Models are developed that relate the device structure and passivation layer under 1 MeV radiation to the observed changes to the measured photoluminescence and deep level transient spectroscopy. A software model is developed to determine the production rate of defects from primary 1 MeV electrons that can be used for other energies and materials. The presence of either a 50 or 120 nm Si 3N4 passivation layer preserves the channel current for both and appears to be optimal for radiation hardness.
Bücher zum Thema "Gallium nitride"
1922-, Pankove Jacques I., und Moustakas T. D, Hrsg. Gallium nitride (GaN). San Diego: Academic Press, 1998.
Den vollen Inhalt der Quelle finden1922-, Pankove Jacques I., Moustakas T. D und Willardson Robert K, Hrsg. Gallium nitride (GaN) II. San Diego: Academic Press, 1999.
Den vollen Inhalt der Quelle findenFeenstra, Randall M., und Colin E. C. Wood, Hrsg. Porous Silicon Carbide and Gallium Nitride. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470751817.
Der volle Inhalt der QuelleEhrentraut, Dirk, Elke Meissner und Michal Bockowski, Hrsg. Technology of Gallium Nitride Crystal Growth. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04830-2.
Der volle Inhalt der QuelleB, Gil, Hrsg. Low-dimensional nitride semiconductors. Oxford: Oxford University Press, 2002.
Den vollen Inhalt der Quelle findenMichael, Shur, und Davis Robert F. 1942-, Hrsg. GaN-based materials and devices: Growth, fabrication, characterization and performance. Singapore: World Scientific, 2004.
Den vollen Inhalt der Quelle findenInternational Conference on Nitride Semiconductors (4th 2001 Denver, Colo.). ICNS-4: Fourth International Conference on Nitride Semiconductors, Denver, Colorado, USA, 2001 : proceedings. Berlin: Wiley-VCH, 2002.
Den vollen Inhalt der Quelle findenChuan, Feng Zhe, Hrsg. III-nitride devices and nanoengineering. London: Imperial College Press, 2008.
Den vollen Inhalt der Quelle findenVserossiĭskoe soveshchanie "Nitridy gallii︠a︡, indii︠a︡ i ali︠u︡minii︠a︡--struktury i pribory" (2nd 1998 St. Petersburg, Russia). Nitridy gallii︠a︡, indii︠a︡ i ali︠u︡minii︠a︡--struktury i pribory: Materialy 2-go vserossiĭskogo soveshchanii︠a︡, 2 ii︠u︡nii︠a︡ 1998 g., Sankt-Peterburgskiĭ gosudarstvennyĭ tekhnicheskiĭ universitet = Gallium nitride, indium nitride, aluminum nitride--structures and devices : technical digest : the 2nd Russian Workshop, June 2, 1998, St.-Petersburg State Technical University. Sankt-Peterburg: Sankt-Peterburgskiĭ gos. tekhn. universitet, 1998.
Den vollen Inhalt der Quelle findenConference on Semiconducting and Insulating Materials (9th 1996 Toulouse, France). Semiconducting and insulating materials 1996: Proceedings of the 9th Conference on Semiconducting and Insulating Materials (SIMC'9), April 29/May 3, 1996, Toulouse, France. New York: Institute of Electrical and Electronics Engineers, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Gallium nitride"
Linares, R. C., und R. M. Ware. „Gallium Nitride“. In Inorganic Reactions and Methods, 202. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145227.ch146.
Der volle Inhalt der QuelleDi Paolo Emilio, Maurizio. „Gallium Nitride“. In GaN and SiC Power Devices, 35–47. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50654-3_4.
Der volle Inhalt der QuelleSchoonmaker, Richard C., Claudia E. Burton, J. Lundstrom und J. L. Margrave. „Gallium (III) Nitride“. In Inorganic Syntheses, 16–18. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132388.ch5.
Der volle Inhalt der QuelleBin, Dong. „9 The Packaging Technologies for GaN HEMTs“. In Gallium Nitride Power Devices, 261–80. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315196626-10.
Der volle Inhalt der QuelleFeenstra, R. M., und S. W. Hla. „2.3.7 GaN, Gallium Nitride“. In Physics of Solid Surfaces, 52–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_24.
Der volle Inhalt der QuelleKinski, Isabel, und Paul F. McMillan. „Gallium Nitride and Oxonitrides“. In Ceramics Science and Technology, 91–130. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631735.ch3.
Der volle Inhalt der QuelleKinski, Isabel, und Paul F. McMillan. „Gallium Nitride and Oxonitrides“. In Ceramics Science and Technology, 91–130. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631940.ch15.
Der volle Inhalt der QuelleChowdhury, Srabanti. „Vertical Gallium Nitride Technology“. In Power Electronics and Power Systems, 101–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43199-4_5.
Der volle Inhalt der QuelleKhandelwal, Sourabh. „Gallium Nitride Semiconductor Devices“. In Advanced SPICE Model for GaN HEMTs (ASM-HEMT), 1–8. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77730-2_1.
Der volle Inhalt der QuelleBehzad, Somayeh. „Two-Dimensional Gallium Nitride“. In 21st Century Nanoscience – A Handbook, 7–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429347290-7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Gallium nitride"
Wu, Tsung Han, Zhe Chuan Feng, Fangfei Li, Chung Cherng Lin, Ian Ferguson, Ray Hua Horng, Weijie Lu, P. M. Champion und L. D. Ziegler. „Brillouin scattering studies of gallium nitride and Indium gallium nitride“. In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482346.
Der volle Inhalt der QuellePraharaj, C. Jayant. „Gallium Nitride/ Boron Nitride/ Aluminum Gallium Nitride E-Mode High Electron Mobility Transistor Modeling“. In 2023 1st International Conference on Circuits, Power and Intelligent Systems (CCPIS). IEEE, 2023. http://dx.doi.org/10.1109/ccpis59145.2023.10291344.
Der volle Inhalt der QuelleMcGinn, Christine, Qingyuan Zeng, Keith Behrman, Vikrant Kumar und Ioannis Kymissis. „Fully transparent gallium nitride/indium gallium nitride LED as a position sensitive detector“. In Gallium Nitride Materials and Devices XIX, herausgegeben von Hadis Morkoç, Hiroshi Fujioka und Ulrich T. Schwarz. SPIE, 2024. http://dx.doi.org/10.1117/12.2692143.
Der volle Inhalt der QuelleMartin, Kevin N. „European gallium nitride capability“. In 2015 IEEE International Radar Conference (RadarCon). IEEE, 2015. http://dx.doi.org/10.1109/radar.2015.7131004.
Der volle Inhalt der QuelleLi, Changyi, Antonio Hurtado, Jeremy B. Wright, Huiwen Xu, Sheng Liu, Ting S. Luk, Igal Brener, Steven R. Brueck und George T. Wang. „Gallium Nitride Nanotube Lasers“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_si.2014.sw1g.3.
Der volle Inhalt der QuelleSakr, Salam, Maria Tchernycheva, Juliette Mangeney, Elias Warde, Nathalie Isac, Lorenzo Rigutti, Raffaele Colombelli et al. „III-nitride intersubband photonics“. In Gallium Nitride Materials and Devices VII. SPIE, 2012. http://dx.doi.org/10.1117/12.900002.
Der volle Inhalt der QuelleDavis, R. F., S. M. Bishop, S. Mita, R. Collazo, Z. J. Reitmeier und Z. Sitar. „Epitaxial Growth Of Gallium Nitride“. In PERSPECTIVES ON INORGANIC, ORGANIC, AND BIOLOGICAL CRYSTAL GROWTH: FROM FUNDAMENTALS TO APPLICATIONS: Basedon the lectures presented at the 13th International Summer School on Crystal Growth. AIP, 2007. http://dx.doi.org/10.1063/1.2751931.
Der volle Inhalt der QuelleStassen, E., M. Pu, E. Semenova, E. Zavarin, W. Lundin und K. Yvind. „Highly Nonlinear Gallium Nitride Waveguides“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_si.2018.sth3i.1.
Der volle Inhalt der QuelleGauthier, Briere, und Patrice Genevet. „Gallium nitride free standing metasurfaces“. In 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086612.
Der volle Inhalt der QuelleSui, Jingyang, und Pei-Cheng Ku. „Gallium Nitride Based Tactile Sensors“. In CLEO: Applications and Technology. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_at.2017.atu1a.6.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Gallium nitride"
Harris, J. S. Bulk Gallium Nitride Growth. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada353635.
Der volle Inhalt der QuelleHeikman, Sten J., und Umesh K. Mishra. System for Bulk Growth of Gallium Nitride. Vapor Phase Epitaxy of Gallium Nitride by Gallium Arc Evaporation. Fort Belvoir, VA: Defense Technical Information Center, März 2005. http://dx.doi.org/10.21236/ada464611.
Der volle Inhalt der QuelleSkowronski, M. Deposition of Gallium Nitride Epilayers by OMVPE. Fort Belvoir, VA: Defense Technical Information Center, Januar 1998. http://dx.doi.org/10.21236/ada337316.
Der volle Inhalt der QuelleJones, Kenneth A., Randy P. Tompkins, Michael A. Derenge, Kevin W. Kirchner, Iskander G. Batyrev und Shuai Zhou. Gallium Nitride (GaN) High Power Electronics (FY11). Fort Belvoir, VA: Defense Technical Information Center, Januar 2012. http://dx.doi.org/10.21236/ada556955.
Der volle Inhalt der QuelleAllen, N. Gallium Nitride Superjunction Transistor: Continued Funding Report. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1890078.
Der volle Inhalt der QuelleMitchell, Christine Charlotte. Defect reduction in gallium nitride using cantilever epitaxy. Office of Scientific and Technical Information (OSTI), August 2003. http://dx.doi.org/10.2172/918286.
Der volle Inhalt der QuellePenn, John, Sami Hawasli, Khamsouk Kingkeo und Ali Darwish. Gallium Nitride (GAN) RF Challenge; BAE Design Testing. Aberdeen Proving Ground, MD: DEVCOM Army Research Laboratory, September 2021. http://dx.doi.org/10.21236/ad1148108.
Der volle Inhalt der QuelleHarris, H. M., J. Laskar und S. Nuttinck. Engineering Support for High Power Density Gallium Nitride Microwave Transistors. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2001. http://dx.doi.org/10.21236/ada397860.
Der volle Inhalt der QuelleMcHugo, S. A., J. Krueger und C. Kisielowski. Metallic impurities in gallium nitride grown by molecular beam epitaxy. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603696.
Der volle Inhalt der QuelleHite, Jennifer, Mark Twigg, Michael Mastro, Jr Freitas, Meyer Jaime, Vurgaftman Jerry, O'Connor Igor et al. Development of Periodically Oriented Gallium Nitride for Non-linear Optics. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada563315.
Der volle Inhalt der Quelle