Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fusarium pathogens“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fusarium pathogens" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fusarium pathogens"
Sharma, Lav, und Guilhermina Marques. „Fusarium, an Entomopathogen—A Myth or Reality?“ Pathogens 7, Nr. 4 (28.11.2018): 93. http://dx.doi.org/10.3390/pathogens7040093.
Der volle Inhalt der QuelleAbd Murad, Nur Baiti, Muskhazli Mustafa, Khozirah Shaari und Nur Ain Izzati Mohd Zainudin. „Antifungal Activity of Aqueous Plant Extracts and Effects on Morphological and Germination of Fusarium Fruit Rot Pathogens“. Sains Malaysiana 50, Nr. 6 (30.06.2021): 1589–98. http://dx.doi.org/10.17576/jsm-2021-5006-07.
Der volle Inhalt der QuelleDawood, Mahamed K. „Seed-borne fungi, especially pathogens, of spring wheat“. Acta Mycologica 18, Nr. 1 (20.08.2014): 83–112. http://dx.doi.org/10.5586/am.1982.005.
Der volle Inhalt der QuelleGrzanka, Monika, Łukasz Sobiech, Jakub Danielewicz, Joanna Horoszkiewicz-Janka, Grzegorz Skrzypczak, Zuzanna Sawinska, Dominika Radzikowska und Stanisław Świtek. „Impact of essential oils on the development of pathogens of the Fusarium genus and germination parameters of selected crops“. Open Chemistry 19, Nr. 1 (01.01.2021): 884–93. http://dx.doi.org/10.1515/chem-2021-0079.
Der volle Inhalt der QuelleMeyer, Susan E., Julie Beckstead und Phil S. Allen. „Niche specialization in Bromus tectorum seed bank pathogens“. Seed Science Research 28, Nr. 3 (13.06.2018): 215–21. http://dx.doi.org/10.1017/s0960258518000193.
Der volle Inhalt der QuellePorteous-Álvarez, Alejandra J., Sara Mayo-Prieto, Samuel Álvarez-García, Bonifacio Reinoso und Pedro A. Casquero. „Genetic Response of Common Bean to the Inoculation with Indigenous Fusarium Isolates“. Journal of Fungi 6, Nr. 4 (16.10.2020): 228. http://dx.doi.org/10.3390/jof6040228.
Der volle Inhalt der QuelleZitnick-Anderson, Kimberly, Luis E. del Río Mendoza, Shana Forster und Julie S. Pasche. „Associations among the communities of soil-borne pathogens, soil edaphic properties and disease incidence in the field pea root rot complex“. Plant and Soil 457, Nr. 1-2 (22.10.2020): 339–54. http://dx.doi.org/10.1007/s11104-020-04745-4.
Der volle Inhalt der QuelleTewoldemedhin, Yared T., Sandra C. Lamprecht, Martha M. Vaughan, Gail Doehring und Kerry O’Donnell. „Soybean SDS in South Africa is Caused by Fusarium brasiliense and a Novel Undescribed Fusarium sp.“ Plant Disease 101, Nr. 1 (Januar 2017): 150–57. http://dx.doi.org/10.1094/pdis-05-16-0729-re.
Der volle Inhalt der QuelleTimmusk, Salme, Eviatar Nevo, Fantaye Ayele, Steffen Noe und Ülo Niinemets. „Fighting Fusarium Pathogens in the Era of Climate Change: A Conceptual Approach“. Pathogens 9, Nr. 6 (28.05.2020): 419. http://dx.doi.org/10.3390/pathogens9060419.
Der volle Inhalt der QuelleJoshua, Jacqueline, und Margaret T. Mmbaga. „Potential Biological Control Agents for Soilborne Fungal Pathogens in Tennessee Snap Bean Farms“. HortScience 55, Nr. 7 (Juli 2020): 988–94. http://dx.doi.org/10.21273/hortsci14081-19.
Der volle Inhalt der QuelleDissertationen zum Thema "Fusarium pathogens"
Vágány, Viktória. „Characterisation of fusarium pathogens in the UK“. Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/56393/.
Der volle Inhalt der QuelleAlmiman, Bandar F. „Molecular genetic and genomic characterization of an emerging mycotoxigenic pathogen Fusarium proliferatum“. Thesis, University of Bedfordshire, 2018. http://hdl.handle.net/10547/622835.
Der volle Inhalt der QuelleAmoah, Bernasko Kwasi. „Pathogenicity and genetic studies of Fusarium moniliforme Sheldon“. Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337831.
Der volle Inhalt der QuelleLees, Alison Kathryn. „Diagnosis and control of foot rot pathogens of wheat“. Thesis, Open University, 1995. http://oro.open.ac.uk/57549/.
Der volle Inhalt der QuelleOdom, Jennifer Lorraine. „Evaluation of Field Pea Varieties for Resistance to Fusarium Root Rot Pathogens“. Thesis, North Dakota State University, 2017. https://hdl.handle.net/10365/28500.
Der volle Inhalt der QuelleKeyser, Zanephyn. „Parameters affecting the production of fumonisin B1 by fusarium verticillioides in culture“. Thesis, University of the Western Cape, 2001. http://hdl.handle.net/11394/4591.
Der volle Inhalt der QuelleFi1sarium verticillioides is a very important mycotoxin-produeing fungus associated with maize. Fverticillioides produces a group of mycotoxins known as fumonisins under suitable environmental conditions. A series of studies was designed to provide information regarding some of the factors associated with the production offumonisin B1 (FB1) in maize patties and MYRO liquid medium. Our investigation together with previous studies have detailed the important influence of several factors on the production of fumonisins by F verticillioides strains. To understand why these strains are able to produce these toxins, an investigation into the complex interaction that occurs between biotic and abiotic parameters and their impact on fumonisin production was necessary. The results reflect the interacting factors and the intraspecific differences between strains, which may also be present in field conditions. The parameters that were varied under a predetermined set of culture conditions, included initial moisture content of maize patty cultures, temperature, initial pH and the addition of the fumonisin precursors, L-alanine and L-methionineto the cultures. Investigations into the three-way interactions of initial maize patty moisture content (30 ml water to 30g of maize), L-methionine (0.3 %) and temperature (25°C), resulted in the highest yield ofFB1 (5777.26 μgig) produced by MRC 4316. In contrast, MRC 826 was negatively affected, producing lower levels ofFB1 (3492.24 μg/g), compared to MRC 4316 at an initial moisture content (20 ml water to 30 g maize), L-methionine (0.3 %) and 25 °C. An American strain of F verticillioides MRC 7424 (= NRRL 13616), produced the highest levels of FB, (116 μg/ml), while the South African isolates, MRC 4316 and MRC 826, produced lower FB1 levels (93 and 62 μg/ml, respectively) in MYRO liquid medium. In general, FB1 production in maize patty cultures far exceeded levels obtained in liquid shake cultures. It appears that not only the ability of a particular strain of F. verticillioides, but the interaction of a variety of physiological and nutritional factors and the culture medium, are important in the production of FB,. Thus, variation of a single factor such as temperature under field conditions due to seasonal change, may therefore have a major effect on fomonisin production. A chain reaction may occur when changes in moisture, pH, etc. take place, which may influence fumonisin production further. Lyophilisation of fungal cultures proves to be an excellent method to preserve a wide range of fungi over long periods of time. It is, however, necessary to determine the viability of conidia stored in lyophilised vials at 4 ° Con a regular basis. At present, plate count methods remain the most valid technique for the detection of the viability of lyophilised conidia. Membrane-permeant nucleic acid-binding dyes (FUN-I) are viability stains that are relatively new flourescent probes for assessing the viability of metabolically active yeast cells. The purpose of this study was to microscopically determine the viability oflyophilised conidia of Fusarium and A lternaria species, using the yeast, Saccharomyces cerevisiae, as a control. FUN-1 viability stain was compared to two other staining methods, i.e. ethidium bromide (EB) and methylene blue (MB) and the viability of the conidia was compared to colony-forming units (CFU) on solid media as a control. For the purpose of determining or screening for percentage viability in a specific inoculum, results indicate that EB can be used in the case of lyophilised conidia, and MB in the case of freshly harvested conidia. Although FUN-I are recommended as a good way to determine the cell viability of a fungus, it needs relatively complicated procedures and has a time limit in which the stain can be used. The result of this study emphasize that the use of dyes to determine viability of lyophilised conidia require a critical definition of protocols for a specific fungal species, and that a good correlation with CFU needs to be demonstrated. The findings of this study could find useful applications in various studies on living and dead conidial populations. The diverse toxicological effects of fumonisins m animals and plants raised the possibility that fumonisins may also inhibit the growth of filamentous fungi. This study investigated the antifungal activity of FB1 to some h1sariu111 and other fungal species. The sensitivity of these fungi was tested by an agar-diffusion method on PDA plates. FB1 inhibited the myceliaJ growth of five of the nine fungi tested. The FB1-producing Fusarium species isolated from maize, i.e. F verticil/ioides, F glohosum and F proliferatum were resistant to FB1 even though a small inhibition zone at the highest FB1 concentration of 40mM was noted in the case of F. proliferatum. However, amongst two non-producing Fusarium spp. also isolated from maize, one (F subglutinans) was resistant and one (F graminearum) was sensitive. The most sensitive fungi tested were non-producing species not isolated from maize, i.e. A lternaria alternata, Botrytis cinerea and Penicillium expansum. The minimum inhibitory concentration ofFB1 ranged between 0.25-0.SmM for A. alternata, 1-SmM for P. expansum and B. cinerea and 5-1 OmM for F. graminearum, while the other fungi tested showed no sensitivity to FB1. This is the first report on the antifungal activity ofFB1 to filamentous fungi. Another study investigated the effect of FB1 on the germination of freshly harvested conidia of Fusarium and some other fungal species. The FB1 -producing F'usarium species isolated from maize, i. e. F vertici llioides, F. globosum and F. prolifer alum showed a decrease in germ tube length with an increase in FB1 concentrations. This indicated that these fungi can tolerate their own toxic metabolite to a ce11ain extent. However, amongst the two non-fumonisin producing Fi1sarium spp. examined, i.e. F. subglutinans and F. graminearum, isolated from maize, F. subglutinans was induced to genninate faster in the presence ofFB1 but soon developed stunted germ tubes, while F graminearum developed shorter germ tubes compared to the control cultures. The most sensitive fungi tested were species not isolated from maize, i.e. A. alternata, B. cinerea and P. expansum, which did not germinate at higher FB1 concentrations at all. Statistical analyses showed that the inhibiting effect of FB1 was highly significant (P <0.001). The conidial germination bioassay was more sensitive in the detection of the antifungal activity ofFB1 than the petri dish bioassay. The minimum inhibitory concentrations of FB1 for visible mycelial growth were closely comparable to those obtained from conidial germination. Results of these studies provide considerable information on the parameters affecting the production of FB1 and will be of great benefit in further studies focussing on fumonisin prodnction.
Matheron, Michael E., Barry R. Tickes, Martin Porchas, Charles A. Sanchez, Louis G. Didier und Kevin P. Ford. „Evaluation of Lettuce Cultivars for Resistance to Fusarium Wilt in 2003“. College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2003. http://hdl.handle.net/10150/214947.
Der volle Inhalt der QuelleHiguita, Didier Mauricio Chavarriaga. „Biological control of Fusarium spp. and other soil-borne pathogens on tree seedlings“. Thesis, University of Aberdeen, 2003. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602315.
Der volle Inhalt der QuelleBlain, François 1964. „Phytotoxicity and pathogenicity of Fusarium roseum against red clover“. Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61848.
Der volle Inhalt der QuelleHurley, Brett Phillip. „Fungus gnats in forestry nurseries and their possible role as vectors of Fusarium circinatum“. Diss., University of Pretoria, 2006. http://hdl.handle.net/2263/23448.
Der volle Inhalt der QuelleDissertation (MSc)--University of Pretoria, 2006.
Zoology and Entomology
unrestricted
Bücher zum Thema "Fusarium pathogens"
James, Robert L. Effects of a 2-year fallow period on soil populations of Fusarium, Trichoderma and Pythium species after incorporating corn plant residues: USDA Forest Service Nursery, Coeur d'Alene, Idaho. Missoula, MT: U.S. Dept. of Agriculture, Forest Service, Northern Region, 2000.
Den vollen Inhalt der Quelle findenJames, Robert L. Effects of a 2-year fallow period on soil populations of Fusarium, Trichoderma and Pythium species after incorporating corn plant residues: USDA Forest Service Nursery, Coeur d'Alene, Idaho. Missoula, MT: U.S. Dept. of Agriculture, Forest Service, Northern Region, 2000.
Den vollen Inhalt der Quelle findenSteel, Christopher Charles. Host-pathogen interactions in fusarium wilt of tomato. Birmingham: University of Birmingham, 1986.
Den vollen Inhalt der Quelle findenWhitehead, Debra Sian. Races and pathotypes of the wilt pathogen fusarium oxysporum. Norwich: University of East Anglia, 1991.
Den vollen Inhalt der Quelle findenJames, Robert L. Pathogenic characteristics of Fusarium acuminatum isolated from inland Pacific Northwest nurseries. Missoula, MT: U.S. Dept. of Agriculture, Forest Service, Northern Region, 2000.
Den vollen Inhalt der Quelle findenJames, Robert L. Pathogenic Fusarium on spruce seed from the Towner Nursery, North Dakota. Missoula, Mont: USDA Forest Service, Northern Region, 1985.
Den vollen Inhalt der Quelle findenJames, Robert L. Pathogenic characteristics of Fusarium sporotrichioides isolated from inland Pacific Northwest forest nurseries. Missoula, MT: U.S. Dept. of Agriculture, Forest Service, Northern Region, 1999.
Den vollen Inhalt der Quelle findenJohnson, Elizabeth M. Hyaline moulds. Herausgegeben von Christopher C. Kibbler, Richard Barton, Neil A. R. Gow, Susan Howell, Donna M. MacCallum und Rohini J. Manuel. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198755388.003.0017.
Der volle Inhalt der QuelleJacobs, Samantha E., Catherine B. Small und Thomas J. Walsh. Fungal diseases of the respiratory tract. Herausgegeben von Christopher C. Kibbler, Richard Barton, Neil A. R. Gow, Susan Howell, Donna M. MacCallum und Rohini J. Manuel. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198755388.003.0030.
Der volle Inhalt der QuelleAskun, Tulin, Hrsg. Fusarium - Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers. InTech, 2018. http://dx.doi.org/10.5772/intechopen.69673.
Der volle Inhalt der QuelleBuchteile zum Thema "Fusarium pathogens"
Kang, Seogchan, Jill Demers, Maria del Mar Jimenez-Gasco und Martijn Rep. „Fusarium oxysporum“. In Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens, 99–119. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44056-8_5.
Der volle Inhalt der QuelleRoilides, Emmanuel, John Dotis und Aspasia Katragkou. „Fusarium and Scedosporium: Emerging Fungal Pathogens“. In New Insights in Medical Mycology, 267–85. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6397-8_12.
Der volle Inhalt der QuelleLowe, Rohan, Mélanie Jubault, Gail Canning, Martin Urban und Kim E. Hammond-Kosack. „The Induction of Mycotoxins by Trichothecene Producing Fusarium Species“. In Plant Fungal Pathogens, 439–55. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-501-5_27.
Der volle Inhalt der QuelleGuo, Li, und Li-Jun Ma. „Fusarium graminearum Genomics and Beyond“. In Genomics of Plant-Associated Fungi: Monocot Pathogens, 103–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44053-7_4.
Der volle Inhalt der QuelleRidenour, J. B., R. L. Hirsch und B. H. Bluhm. „Identifying Genes in Fusarium verticillioides Through Forward and Reverse Genetics“. In Plant Fungal Pathogens, 457–79. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-501-5_28.
Der volle Inhalt der QuelleMigheli, Quirico, M. Lodovica Gullino und Angelo Garibaldi. „Genetic Manipulation of Antagonistic Fusarium Spp“. In Biotechnological Approaches in Biocontrol of Plant Pathogens, 219–25. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4745-7_11.
Der volle Inhalt der QuelleStouvenakers, Gilles, Peter Dapprich, Sebastien Massart und M. Haïssam Jijakli. „Plant Pathogens and Control Strategies in Aquaponics“. In Aquaponics Food Production Systems, 353–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_14.
Der volle Inhalt der QuelleKaur, Jagdeep, Dilip Shah und John Fellers. „Phenotypic Characterization of Transgenic Wheat Lines Against Fungal Pathogens Puccinia triticina and Fusarium graminearum“. In Methods in Molecular Biology, 269–76. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7337-8_17.
Der volle Inhalt der QuelleBacon, C. W., und D. M. Hinton. „Fusaric Acid and Pathogenic Interactions of Corn and Non-Corn Isolates of Fusarium moniliforme, a Nonobligate Pathogen of Corn“. In Fumonisins in Food, 175–91. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1379-1_16.
Der volle Inhalt der QuelleUmpiérrez, Mariana, Gabriela Garmendia, Mónica Cabrera, Silvia Pereyra und Silvana Vero. „Diversity of Pathogen Populations Causing Fusarium Head Blight of Wheat in Uruguay“. In Fusarium Head Blight in Latin America, 31–44. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7091-1_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fusarium pathogens"
Игнатова, Зоя, und Ирина Кузнецова. „Молекулярно-генетическая идентификация токсинообразующих фитопатогенов из родов Fusarium и Penicillium на озимой пшенице“. In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.82.
Der volle Inhalt der QuelleКузнецова, Ирина, und Галина Белоусова. „Характеристика фитопатогенной нагрузки семян озимой пшеницы устойчивого к болезням сорта куяльник при помощи молекулярно-генетических методов“. In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.83.
Der volle Inhalt der QuelleMerkel, K. A., und E. P. Vibe. „THE PREVALENCE OF INFECTIOUS LODGING OF SEEDLINGS OF COMMON PINE IN AUTUMN SOWING AT THE NURSERY OF SFNR" ERTIS ORMANY»“. In STATE AND DEVELOPMENT PROSPECTS OF AGRIBUSINESS Volume 2. DSTU-Print, 2020. http://dx.doi.org/10.23947/interagro.2020.2.38-40.
Der volle Inhalt der QuelleVasilchenko, N. G., A. V. Gorovtsov, V. A. Chistyakov und M. S. Mazanko. „BACTERIA OF THE ORDER BACILLALES AS PROMISING ANTAGONISTS OF FUSARIUM PATHOGENS AND THEIR IMPACT ON WINTER WHEAT PLANTS“. In INNOVATIVE TECHNOLOGIES IN SCIENCE AND EDUCATION. DSTU-Print, 2020. http://dx.doi.org/10.23947/itno.2020.324-327.
Der volle Inhalt der QuelleTumanova, Lidia, Cristina Grajdieru und Valentin Mitin. „Identification of DNA of pathogens from Fusarium genus in maize plants (Zea mays L.)“. In International Scientific Symposium "Advanced Biotechnologies - Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975566957.14.
Der volle Inhalt der QuelleYakuba, G. V., I. L. Astapchuk und A. I. Nasonov. „The effectiveness of fungicides in vitro against some species of the genus Fusarium Link – pathogens causing core rot of apple“. In CURRENT STATE, PROBLEMS AND PROSPECTS OF THE DEVELOPMENT OF AGRARIAN SCIENCE. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-2020-5-9-10-52.
Der volle Inhalt der QuelleBeloshapkina, O. O., und E. S. Potapova. „Influence of the growing year and storage period of winter wheat seeds on their initial contamination and germination“. In Растениеводство и луговодство. Тимирязевская сельскохозяйственная академия, 2020. http://dx.doi.org/10.26897/978-5-9675-1762-4-2020-153.
Der volle Inhalt der Quelle„The Effect of Temperature Pressure on Multiantagonists Streptomyces sp., Tricho-derma sp. Biological Control of Fusarium oxysporum Wilt Pathogens“. In Seminar Nasional Magister Agroteknologi Fakultas Pertanian UPN “Veteran” Jawa Timur. Galaxy Science, 2020. http://dx.doi.org/10.11594/nstp.2020.0609.
Der volle Inhalt der QuelleLavrinova, V. A., T. S. Polunina und M. P. Leontyeva. „INFLUENCE OF FERTILIZERS AND SURFACE TREATMENT ON THE DENSITY OF THE POPULATION OF PATHOGENS AND SAPROTROPHES IN TYPICAL BLACK SOIL OF THE TAMBOV REGION“. In STATE AND DEVELOPMENT PROSPECTS OF AGRIBUSINESS. DSTU-PRINT, 2020. http://dx.doi.org/10.23947/interagro.2020.1.651-654.
Der volle Inhalt der QuelleVoronkova, A. Kh. „THE DETERMINATION OF THE PHYTOTOXICITY AND GROWTHSTIMULATING ACTIVITY OF PROMISING ANTAGONIST STRAINS OF FUSARIUM BLIGHT PATHOGENS ON THE OIL FLAX CROP“. In 11-я Всероссийская конференция молодых учёных и специалистов «Актуальные вопросы биологии, селекции, технологии возделывания и переработки сельскохозяйственных культур». V.S. Pustovoit All-Russian Research Institute of Oil Crops, 2021. http://dx.doi.org/10.25230/conf11-2021-148-152.
Der volle Inhalt der Quelle