Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fungal root pathogens“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fungal root pathogens" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fungal root pathogens"
Castellanos-Morales, V., R. Cárdenas-Navarro, J. M. García-Garrido, A. Illana, J. A. Ocampo, S. Steinkellner und H. Vierheilig. „ Bioprotection against Gaeumannomyces graminis in barley a comparison between arbuscular mycorrhizal fungi“. Plant, Soil and Environment 58, No. 6 (18.06.2012): 256–61. http://dx.doi.org/10.17221/622/2011-pse.
Der volle Inhalt der QuelleLoit, Kaire, Liina Soonvald, Alar Astover, Eve Runno-Paurson, Maarja Öpik und Leho Tedersoo. „Temporal and Cultivar-Specific Effects on Potato Root and Soil Fungal Diversity“. Agronomy 10, Nr. 10 (09.10.2020): 1535. http://dx.doi.org/10.3390/agronomy10101535.
Der volle Inhalt der QuelleTraquair, James A. „Fungal biocontrol of root diseases: endomycorrhizal suppression of cylindrocarpon root rot“. Canadian Journal of Botany 73, S1 (31.12.1995): 89–95. http://dx.doi.org/10.1139/b95-230.
Der volle Inhalt der QuelleDelavaux, Camille S., Josh L. Schemanski, Geoffrey L. House, Alice G. Tipton, Benjamin Sikes und James D. Bever. „Root pathogen diversity and composition varies with climate in undisturbed grasslands, but less so in anthropogenically disturbed grasslands“. ISME Journal 15, Nr. 1 (21.09.2020): 304–17. http://dx.doi.org/10.1038/s41396-020-00783-z.
Der volle Inhalt der QuelleGao, Ying, Ethan Swiggart, Kaela Wolkiewicz, Prabha Liyanapathiranage, Fulya Baysal-Gurel, Farhat A. Avin, Eleanor F. P. Lopez, Rebecca T. Jordan, Joshua Kellogg und Eric P. Burkhart. „Goldenseal (Hydrastis canadensis L.) Extracts Inhibit the Growth of Fungal Isolates Associated with American Ginseng (Panax quinquefolius L.)“. Molecules 29, Nr. 3 (23.01.2024): 556. http://dx.doi.org/10.3390/molecules29030556.
Der volle Inhalt der QuelleWang, Chengxian, Jianfeng Liu, Changmei Wang, Xingling Zhao, Kai Wu, Bin Yang, Fang Yin und Wudi Zhang. „Biogas slurry application alters soil properties, reshapes the soil microbial community, and alleviates root rot of Panax notoginseng“. PeerJ 10 (26.07.2022): e13770. http://dx.doi.org/10.7717/peerj.13770.
Der volle Inhalt der QuelleToth, Ronald, Deborah Toth, David Starke und David R. Smith. „Vesicular–arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens“. Canadian Journal of Botany 68, Nr. 5 (01.05.1990): 1039–44. http://dx.doi.org/10.1139/b90-131.
Der volle Inhalt der QuelleOkubara, Patricia A., Amy B. Peetz und Richard M. Sharpe. „Cereal Root Interactions with Soilborne Pathogens—From Trait to Gene and Back“. Agronomy 9, Nr. 4 (13.04.2019): 188. http://dx.doi.org/10.3390/agronomy9040188.
Der volle Inhalt der QuelleEyles, A., C. Beadle, K. Barry, A. Francis, M. Glen und C. Mohammed. „Management of fungal root-rot pathogens in tropicalAcacia mangiumplantations“. Forest Pathology 38, Nr. 5 (Oktober 2008): 332–55. http://dx.doi.org/10.1111/j.1439-0329.2008.00549.x.
Der volle Inhalt der QuelleOkubara, Patricia A., und Timothy C. Paulitz. „Root Defense Responses to Fungal Pathogens: A Molecular Perspective“. Plant and Soil 274, Nr. 1-2 (Juli 2005): 215–26. http://dx.doi.org/10.1007/s11104-004-7328-9.
Der volle Inhalt der QuelleDissertationen zum Thema "Fungal root pathogens"
Omar, Ibrahim. „Biological control of crown and root rot of tomato“. Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310952.
Der volle Inhalt der QuelleLevenfors, Jens. „Soil-borne pathogens in intensive legume cropping - Aphanomyces spp. and root rots /“. Uppsala : Dept. of Plant Pathology and Biocontrol Unit, Swedish Univ. of Agricultural Sciences, 2003. http://epsilon.slu.se/a393.pdf.
Der volle Inhalt der QuelleSamils, Nicklas. „Monitoring the control methods of Heterobasidion annosum s.l. root rot /“. Uppsala : Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, 2008. http://epsilon.slu.se/200847.pdf.
Der volle Inhalt der QuelleRay, Pushpanjali. „Search for novel actinomycetes from soil as potential biocontrol agent against fungal root pathogens of phaseolus vulgaris (L.) vigna radiata(L.)“. Thesis, University of North Bengal, 2017. http://ir.nbu.ac.in/hdl.handle.net/123456789/2575.
Der volle Inhalt der QuelleSjöberg, Johanna. „Arbuscular mycorrhizal fungi : occurrence in Sweden and interaction with a plant pathogenic fungus in barley /“. Uppsala : Dept. of Crop Production Ecology, Swedish University of Agricultural Sciences, 2005. http://epsilon.slu.se/200533.pdf.
Der volle Inhalt der QuelleDay, Jennifer P. „In vitro studies into host-pathogen interactions of sunflower and Macrophomina phaseolina“. Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319785.
Der volle Inhalt der QuelleTaheri, Abdolhossein. „Interaction between root lesion nematode, Pratylenchus neglectus, and root-rotting fungi of wheat“. Title page, contents and summary only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09pht128.pdf.
Der volle Inhalt der QuellePorto, Maria Alice Formiga. „Associação de Fusarium solani, Macrophomina phaseolina e Rhizoctonia solani causando podridão radicular em meloeiro sob efeito de adubos verdes“. Universidade Federal Rural do Semi-Árido, 2015. http://bdtd.ufersa.edu.br:80/tede/handle/tede/105.
Der volle Inhalt der QuelleConselho Nacional de Desenvolvimento Científico e Tecnológico
The occurrence of root diseases is one of the main reasons of yield loss in melon crop, especially the pathogens that causes root and collar rot, as the fungi Fusarium solani (Mart.) Sacc., Macrophomina phaseolina (Tassi) Gold. and Rhizoctonia solani Kuhn, being observed in muskmelon either alone or associated. The use of crop residues and plant materil, besides the improvement in the physical properties of the soil, also favors microbial activity of the species presents in this environment and affects negatively onpathogens population. Therefore, the objective of this work was to evaluate the associations of F. solani, M. phaseolina and R. solani in the incidence and severity of root rot and fresh and dry weight of muskmelon and verify the effect of green manure in root rot caused by these pathogens alone or associated. The experiment was conducted in two stages, in a greenhouse. The first stage evaluated the association of F. solani, M. phaseolina and R. solani causing root rot in melon, using a randomized block design with 8 treatments (F. solani; M. phaseolina, R. solani, F. solani + M. phaseolina, F. solani + R. solani; M. phaseolina + R. solani, F. solani + M. phaseolina + R. solani; non-infested soil) and 8 repetitions with experimental unit of one pot (3.5 L) with 2 plants. The characteristics evaluated were the incidence of root rot in melon plants at the end of the cycle; disease severity based on a scale notes, and the fresh and dry weight of muskmelon. At the second stage, evaluated the effects of green manure in the association of these pathogens in muskmelon, which was conducted one experiment with Jack beans (Canavalia ensiformis L. DC) and another with Pearl millet (Pennisetum glaucum (L.) R. BR.). The experiments were performed simultaneously in a randomized block design with 8 x 4 factorial {8 types of fungi / association (M. phaseolina, R. solani, F. solani, M. phaseolina + R. solani; M. phaseolina + F. solani, R. solani + F. solani; M. phaseolina + R. solani + F. solani; non-infested soil), 4 forms of management [incorporated, in coverage, polyethylene film (mulching) and without managment]} and 4 repetitions. The characteristics evaluated were the incidence of root rot of melon plants at the end of the cycle, and the fresh and dry weight of muskmelon. The results of disease incidence were submitted to the non-parametric test of Kruskal-Wallis and the fresh and dry weight of muskmelon were analyzed by the Scott-Knott test, both with significance level of 5% of probability (α = 0.05%). At stage 1, the treatment with the three pathogens F. solani, M. phaseolina and R. solani associated resulted in lower incidence of plants with symptoms and was not statistically different from the control. The pathogen R. solani was the least prevalent in the associations. The lowest accumulation of fresh and dry matter happened when the soil was infested with Fusarium solani alone. At stage 2, Jack beans in coverage provided lower incidence of root rot in muskmelon with Fusarium solani alone and in triple association (F. solani +M. phaseolina and R. solani). The use of Pearl millet had no effect on root rot incidence in most treatments. In both experiments (Jack beans andPearl millet), Macrophomina phaseolina was the fungus that prevailed in almost all associations. Jack beans and millet did not increase the fresh and dry weight of muskmelon in most treatments
A ocorrência de doenças radiculares representa uma das principais causas de perda de rendimento na cultura do melão, com destaque para os patógenos causadores das podridões de raízes e colos, como os fungos Fusarium solani (Mart.) Sacc., Macrophomina phaseolina (Tassi) Gold. e Rhizoctonia solani Kuhn, sendo observados no meloeiro tanto de forma isolada quanto associada. A utilização de restos de cultura e material vegetal, além de melhorar as propriedades físicas do solo, favorece a atividade microbiana das espécies presentes neste ambiente e interfere negativamente sobre a população de patógenos. Portanto, objetiva-se com este trabalho avaliar as associações dos patógenos F. solani, M. phaseolina e R. solani na incidência e severidade de podridão radicular e na massa da matéria fresca e seca do meloeiro e verificar o efeito de materiais vegetais na podridão radicular causada por estes patógenos isolados ou associados. O experimento foi conduzido em duas etapas, em casa de vegetação, sendo que na primeira avaliou-se a associação de F. solani, M. phaseolina e R. solani causando podridão radicular em meloeiro, quando foi utilizado o delineamento em blocos casualizados com 8 tratamentos (F. solani; M. phaseolina; R. solani; F. solani + M. phaseolina; F. solani + R. solani; M. phaseolina + R. solani; F. solani + M. phaseolina + R. solani; solo não infestado) e 8 repetições, com unidade experimental de 1 vaso (3,5 L) com duas plantas. As características avaliadas foram: incidência de podridão radicular nas plantas de melão no fim do ciclo, severidade da doença com base em escala de notas, além da matéria fresca e seca das plantas de melão. Na segunda etapa, foi avaliado o efeito de materiais vegetais na associação desses patógenos, também em meloeiro, onde foi realizado um experimento com Feijão-de-porco (Canavalia ensiformis L. DC) e outro com Milheto (Pennisetum glaucum (L.) R. BR.). Os experimentos foram conduzidos simultaneamente, em delineamento experimental de blocos casualizados, com esquema fatorial 8 x 4, sendo 8 tipos de fungos/associação (M. phaseolina; R. solani; F. solani; M. phaseolina + R. solani; M. phaseolina + F. solani; R. solani + F. solani; M. phaseolina + R. solani + F. solani; solo sem inoculação), 4 formas de manejo (incorporado, cobertura, mulching e sem manejo) e 4 repetições. As características avaliadas foram: incidência de podridão radicular nas plantas de melão no fim do ciclo, a massa da matéria fresca e seca das plantas de melão. Os resultados de incidência de doença obtidos foram submetidos ao teste não paramétrico de Kruskal-Wallis e a massa damatéria fresca e seca foram analisados pelo teste de Scott-Knott, ambos com nível de significância a 5% de probabilidade (α = 0,05%). Na etapa 1, o tratamento no qual foram associados três patógenos F. solani, M. phaseolina e R. solani propiciou menor porcentagem de plantas com sintomas da doença e não diferiu estatisticamente da testemunha. O fitopatógeno R. solani foi o que menos prevaleceu nas associações. Quando o solo foi infestado com Fusarium solani, isoladamente, o melão obteve baixo acúmulo de matéria fresca e seca. Na etapa II, o feijão-de-porco em cobertura proporcionoiu menor incidência de podridão radicular do meloeiro quando o Fusarium solani estava sozinho e em associação tripla (F. solani +M. phaseolina e R. solani). A utilização do milheto não apresentou efeito na incidência de podridão radicular na maioria dos tratamentos. Tanto na utilização do feijão-de-porco quanto do milheto, M. phaseolina foi o fungo que prevaleceu na maioria das associações nas quais estava presente. O feijão-de-porco e o milheto não proporcionaram aumento na massa da matéria fresca e seca do meloeiro na maioria dos tratamentos
Wicks, T. J. „Phytophthora crown rot of almond and cherry trees : pathogens, rootstock and scion susceptib[i]lity and control /“. Title page, table of contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09PH/09phw637.pdf.
Der volle Inhalt der QuelleBalbino, Deyse Anne Dias. „Reação de diferentes culturas a Monosporascus cannonballus“. Universidade Federal Rural do Semi-Árido, 2015. http://bdtd.ufersa.edu.br:80/tede/handle/tede/111.
Der volle Inhalt der QuelleCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The fungus M. cannonballus is a thermophilic plant pathogen, associated with the decline of crude oil in cucurbits worldwide. Although frequently associated with this family, which causes the decline of crude oil, this fungus has been reported in other crops, including maize, beans and cotton, and is, however, little known pathogenicity in these species. The objective of this study was to evaluate the susceptibility of cultivars of different host crops cucurbits and not cucurbits, front inoculation of two isolates of M. cannonballus. The present study tested the behavior of two isolates of M. cannonballus, CMM 3646, isolated Boerhavia diffusa roots (Catch pinto) and CMM 2390, isolated from melon roots, compared to 10 crops (tomatoes, beans, sesame, pumpkin, cucumber, melon, watermelon, sorghum, corn and cotton) with two cultivars of each, totaling forty treatments. With the means of this evaluation we calculated the overall index of the disease (IGD). Pathogenicity was confirmed by isolation of the inoculated fungus. The production of the inoculum of strains was made from the PDA culture medium containing the fungus mycelium. The crops were grown in pots containing sterile soil mixture, sand and substrate. After 50 days of culture, the insulation made from the roots of plants. It was found varying degrees of resistance and susceptibility of cultivars evaluated on isolates used. Cultivars of cucurbits were grouped into categories which the highly susceptible front of the CMM-3646 and CMM-2390 isolated. The species belonging to this family were the ones that had higher IGD. The cultivars of tomato and corn had susceptibility behavior to fungal isolates of M. cannonballus. The sorghum cultivars for both isolates of M. cannonballus behaved as moderately resistant. The cultures do not cucurbits such as cotton, sesame and cowpea obtained degrees of resistance to the fungal isolates used
O fungo Monosporascus cannonballus é um fitopatógeno termófilo, associado ao declínio das ramas em cucurbitáceas em todo o mundo. Apesar de ser frequentemente associado a esta família, na qual provoca o declínio das ramas, este fungo tem sido relatado em outras culturas, entre elas o milho, o feijão e o algodão, sendo, no entanto, pouco conhecida a sua patogenicidade nessas espécies. O objetivo deste trabalho foi avaliar a susceptibilidade de cultivares de diferentes culturas hospedeiras cucurbitáceas e não cucurbitáceas, frente a inoculação de dois isolados de M. cannonballus. No presente trabalho foi testado o comportamento de dois isolados de M. cannonballus, CMM 3646, isolado de raízes de Boerhavia difusa (Pega-pinto) e CMM 2390, isolado de raízes de meloeiro, frente a 10 culturas (tomate, feijão, gergelim, abóbora, pepino, melão, melancia, sorgo, milho e algodão) com duas cultivares de cada, totalizando quarenta tratamentos. Com as médias desta avaliação foi calculado o índice geral da doença (IGD). A patogenicidade foi confirmada através do isolamento do fungo inoculado. A produção do inóculo dos isolados foi feita a partir do meio de cultura BDA, contendo micélios do fungo. Os cultivares, foram cultivados em vasos, contendo uma mistura estéril de solo, areia e substrato. Após 50 dias de cultivo, o ensaio foi desmontado e feito o isolamento das raízes das plantas. Foi constatado resistência e diferentes graus de susceptibilidade dos cultivares avaliados aos isolados utilizados. Os cultivares de cucurbitáceas foram agrupadas nas categorias de susceptíveis a muito susceptíveis frente aos isolados CMM-3646 e CMM-2390. As espécies pertencentes a essa família foram as que obtiveram maiores IGD. Os cultivares de tomate e milho tiveram comportamento de susceptibilidade aos isolados fúngicos de M. cannonballus. Os cultivares de sorgo para ambos os isolados de M. cannonballus se comportaram como medianamente resistentes. As culturas não cucurbitáceas como as de algodão, gergelim e feijão-caupi obtiveram graus de resistência aos isolados de fúngicos utilizados
Bücher zum Thema "Fungal root pathogens"
Thies, Walter Gene. Laminated root rot in Western North America. Portland, Or: U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 1995.
Den vollen Inhalt der Quelle findenPeterson, Michael James. Sanitation of styroblocks to control algae and seedling root rot fungi. Victoria, B.C: Forestry Canada, 1990.
Den vollen Inhalt der Quelle findenMazzola, Mark. The effect of fungal root pathogens and phenazine antibiotic biosynthesis on the survival of fluorescent pseudomonads in soil habitats. 1990.
Den vollen Inhalt der Quelle findenGarrett, S. D. Pathogenic Root-Infecting Fungi. University of Cambridge ESOL Examinations, 2011.
Den vollen Inhalt der Quelle findenLaminated root rot in Western North America. [Portland, Or.]: U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 1995.
Den vollen Inhalt der Quelle findenBae, Hanhong. RFLP analysis of genetic variation in the laminated-root-rot fungal pathogen of conifers, Phellinus weirii. 1992.
Den vollen Inhalt der Quelle findenFerguson, Brennan Angus. Fungal root pathogen interactions in a mixed conifer forest in the Blue Mountains of northeastern Oregon. 1994.
Den vollen Inhalt der Quelle findenMarsden, M. A. Sensitivity of the western root disease model: inventory of root disease. 1992.
Den vollen Inhalt der Quelle findenStirling, Graham, Helen Hayden, Tony Pattison und Marcelle Stirling. Soil Health, Soil Biology, Soilborne Diseases and Sustainable Agriculture. CSIRO Publishing, 2016. http://dx.doi.org/10.1071/9781486303052.
Der volle Inhalt der QuelleKirchman, David L. Symbioses and microbes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0014.
Der volle Inhalt der QuelleBuchteile zum Thema "Fungal root pathogens"
Pinhey, Sally, und Margaret Tebbs. „The role of fungi.“ In Plants for soil regeneration: an illustrated guide, 23–27. Wallingford: CABI, 2022. http://dx.doi.org/10.1079/9781789243604.0005.
Der volle Inhalt der QuelleOkubara, Patricia A., und Timothy C. Paulitz. „Root defense responses to fungal pathogens: A molecular perspective“. In Plant Ecophysiology, 215–26. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-4099-7_11.
Der volle Inhalt der QuelleChiwona-Karltun, Linley, Leon Brimer und Jose Jackson. „Improving Safety of Cassava Products“. In Root, Tuber and Banana Food System Innovations, 241–58. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92022-7_8.
Der volle Inhalt der QuelleUlrich, Danielle E. M., Steve Voelker, J. Renée Brooks und Frederick C. Meinzer. „Insect and Pathogen Influences on Tree-Ring Stable Isotopes“. In Stable Isotopes in Tree Rings, 711–36. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92698-4_25.
Der volle Inhalt der QuelleBruhn, Johann N., und Jeanne D. Mihail. „Opportunistically Pathogenic Root Rot Fungi: Armillaria Species“. In Ecological Studies, 337–46. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4613-0021-2_19.
Der volle Inhalt der QuelleKashyap, Priyakshi, Indrani Sharma, Sampurna Kashyap und Niraj Agarwala. „Arbuscular Mycorrhizal Fungi (AMF)-Mediated Control of Foliar Fungal Diseases“. In Arbuscular Mycorrhizal Fungi and Higher Plants, 193–223. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8220-2_9.
Der volle Inhalt der QuelleStrobel, N. E., und W. A. Sinclair. „Role of Mycorrhizal Fungi in Tree Defense Against Fungal Pathogens of Roots“. In Defense Mechanisms of Woody Plants Against Fungi, 321–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-01642-8_15.
Der volle Inhalt der Quelleda Silva Campos, Maryluce Albuquerque. „Applications of Arbuscular Mycorrhizal Fungi in Controlling Root-Knot Nematodes“. In Arbuscular Mycorrhizal Fungi and Higher Plants, 225–37. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8220-2_10.
Der volle Inhalt der QuelleTripathi, S., S. Kamal, I. Sheramati, R. Oelmuller und A. Varma. „Mycorrhizal Fungi and Other Root Endophytes as Biocontrol Agents Against Root Pathogens“. In Mycorrhiza, 281–306. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78826-3_14.
Der volle Inhalt der QuelleThomashow, Linda, und Peter A. H. M. Bakker. „Microbial Control of Root-Pathogenic Fungi and Oomycetes“. In Principles of Plant-Microbe Interactions, 165–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08575-3_18.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fungal root pathogens"
Yin, Chuntao. „Disease-induced changes in the rhizosphere microbiome reduced root disease“. In IS-MPMI Congress. IS-MPMI, 2023. http://dx.doi.org/10.1094/ismpmi-2023-5r.
Der volle Inhalt der QuelleMihnea, Nadejda. „Reacția unor linii de tomate la izolatele fungului Alternaria alternata“. In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.64.
Der volle Inhalt der QuelleSasanelli, Nicola, Ion Toderas, Franco Ciccarese, Elena Iurcu-Straistaru, Stefan Rusu, Lidia Toderas, Marek Renčo et al. „A sustainable management of corky root and root-knot nematodes by the biocontrol agent aphanocladium album isolate MX-95“. In International Symposium "Actual problems of zoology and parasitology: achievements and prospects". Institute of Zoology, 2017. http://dx.doi.org/10.53937/9789975665902.08.
Der volle Inhalt der QuelleСтратулат, Татьяна, Татьяна Щербакова, Штефан Кручан und Андрей Лунгу. „Пораженность листвы древесных насаждений города Кишинева комплексом гнилей летом 2021 года“. In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.92.
Der volle Inhalt der QuelleVoronkova, A. Kh. „THE DETERMINATION OF THE PHYTOTOXICITY AND GROWTHSTIMULATING ACTIVITY OF PROMISING ANTAGONIST STRAINS OF FUSARIUM BLIGHT PATHOGENS ON THE OIL FLAX CROP“. In 11-я Всероссийская конференция молодых учёных и специалистов «Актуальные вопросы биологии, селекции, технологии возделывания и переработки сельскохозяйственных культур». V.S. Pustovoit All-Russian Research Institute of Oil Crops, 2021. http://dx.doi.org/10.25230/conf11-2021-148-152.
Der volle Inhalt der QuelleChaerani, Ragapadmi Purnamaningsih und Suci Rahayu. „Isolation and pathogenicity test of fusarium basal rot and purple blotch fungal pathogens from shallot and Allium spp“. In THE SECOND INTERNATIONAL CONFERENCE ON GENETIC RESOURCES AND BIOTECHNOLOGY: Harnessing Technology for Conservation and Sustainable Use of Genetic Resources for Food and Agriculture. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0075209.
Der volle Inhalt der QuelleDatsenko, L. A. „SUNFLOWER DRY ROT (REVIEW)“. In 11-я Всероссийская конференция молодых учёных и специалистов «Актуальные вопросы биологии, селекции, технологии возделывания и переработки сельскохозяйственных культур». V.S. Pustovoit All-Russian Research Institute of Oil Crops, 2021. http://dx.doi.org/10.25230/conf11-2021-156-162.
Der volle Inhalt der QuellePrudnikova, Svetlana. „THE DEVELOPMENT OF SLOW-RELEASED FUNGICIDE PREPARATIONS BASED ON BIODEGRADABLE POLY(3-HYDROXYBUTYRATE) TO SUPPRESS ROOT-ROT PATHOGENIC FUNGI“. In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019v/6.3/s08.028.
Der volle Inhalt der QuelleMajumdar, Ayanava, Mark A. Boetel, Stefan T. Jaronski, Robert J. Dregseth und Alan J. Schroeder. „Bio-based management of sugarbeet root maggot by integrating an insect pathogenic fungus and cereal cover crops“. In American Society of Sugar Beet Technologist. ASSBT, 2007. http://dx.doi.org/10.5274/assbt.2007.67.
Der volle Inhalt der QuelleMaslienko, L. V., A. Kh Voronkova, E. A. Efimtseva und L. A. Datsenko. „The action mechanism of the promising fungal producer strain of the microbiopreparation M-24 Penicillium sp. on the pathogen of sunflower Phoma rot“. In PROCEEDINGS OF THE II INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS, SYSTEMS AND TECHNOLOGIES: (CAMSTech-II 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0093008.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Fungal root pathogens"
Cytryn, E., Sean F. Brady und O. Frenkel. Cutting edge culture independent pipeline for detection of novel anti-fungal plant protection compounds in suppressive soils. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2022. http://dx.doi.org/10.32747/2022.8134142.bard.
Der volle Inhalt der QuelleCytryn, Eddie, Mark R. Liles und Omer Frenkel. Mining multidrug-resistant desert soil bacteria for biocontrol activity and biologically-active compounds. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7598174.bard.
Der volle Inhalt der QuelleMacDonald, James D., Aharon Abeliovich, Manuel C. Lagunas-Solar, David Faiman und John Kabshima. Treatment of Irrigation Effluent Water to Reduce Nitrogenous Contaminants and Plant Pathogens. United States Department of Agriculture, Juli 1993. http://dx.doi.org/10.32747/1993.7568092.bard.
Der volle Inhalt der QuelleHarman, Gary E., und Ilan Chet. Enhancement of plant disease resistance and productivity through use of root symbiotic fungi. United States Department of Agriculture, Juli 2008. http://dx.doi.org/10.32747/2008.7695588.bard.
Der volle Inhalt der QuelleKistler, Harold Corby, und Talma Katan. Identification of DNA Unique to the Tomato Fusarium Wilt and Crown Rot Pathogens. United States Department of Agriculture, September 1995. http://dx.doi.org/10.32747/1995.7571359.bard.
Der volle Inhalt der QuellePrusky, Dov, Lisa Vaillancourt und Robert Fluhr. Host Ammonification by Postharvest Pathogens and its Contribution to Fungal Colonization and Symptom Development. United States Department of Agriculture, Dezember 2006. http://dx.doi.org/10.32747/2006.7592640.bard.
Der volle Inhalt der QuelleKatan, Jaacov, und Michael E. Stanghellini. Clinical (Major) and Subclinical (Minor) Root-Infecting Pathogens in Plant Growth Substrates, and Integrated Strategies for their Control. United States Department of Agriculture, Oktober 1993. http://dx.doi.org/10.32747/1993.7568089.bard.
Der volle Inhalt der QuelleBostock, Richard M., Dov Prusky und Martin Dickman. Redox Climate in Quiescence and Pathogenicity of Postharvest Fungal Pathogens. United States Department of Agriculture, Mai 2003. http://dx.doi.org/10.32747/2003.7586466.bard.
Der volle Inhalt der QuellePhillips, Donald, und Yoram Kapulnik. Using Flavonoids to Control in vitro Development of Vesicular Arbuscular Mycorrhizal Fungi. United States Department of Agriculture, Januar 1995. http://dx.doi.org/10.32747/1995.7613012.bard.
Der volle Inhalt der QuelleHarman, Gary E., und Ilan Chet. Enhancing Crop Yield through Colonization of the Rhizosphere with Beneficial Microbes. United States Department of Agriculture, Dezember 2001. http://dx.doi.org/10.32747/2001.7580684.bard.
Der volle Inhalt der Quelle