Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fungal material“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fungal material" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fungal material"
Chard, Jane M., Jane W. Walker, Andrew F. D. Kennedy und I. W. Sutherland. „Unusual bacteria from fungal material“. FEMS Microbiology Letters 40, Nr. 2-3 (Februar 1987): 345–48. http://dx.doi.org/10.1111/j.1574-6968.1987.tb02051.x.
Der volle Inhalt der QuelleKositchaiyong, Apisit, und Narongrit Sombatsompop. „Inhibition of Fungal Growth and Material Characteristics of PVC and Wood/PVC Composites Doped with Fungicides“. Advanced Materials Research 747 (August 2013): 343–46. http://dx.doi.org/10.4028/www.scientific.net/amr.747.343.
Der volle Inhalt der QuelleShkorbotun, Yaroslav V., und Mykola A. Skoryk. „Features of diagnostics of fungal ball of paranasal sinuses of iatrogenic genesis“. OTORHINOLARYNGOLOGY №5-6(3) 2020, Nr. 5-6(3) 2020 (04.11.2020): 4–11. http://dx.doi.org/10.37219/2528-8253-2020-6-04.
Der volle Inhalt der QuellePasanen, Anna-Liisa, Kati Yli-Pietilä, Pertti Pasanen, Pentti Kalliokoski und Juhani Tarhanen. „Ergosterol Content in Various Fungal Species and Biocontaminated Building Materials“. Applied and Environmental Microbiology 65, Nr. 1 (01.01.1999): 138–42. http://dx.doi.org/10.1128/aem.65.1.138-142.1999.
Der volle Inhalt der QuelleTayyab, Muhammad, Waqar Islam, Chol Gyu Lee, Ziqin Pang, Farghama Khalil, Sheng Lin, Wenxiong Lin und Hua Zhang. „Short-Term Effects of Different Organic Amendments on Soil Fungal Composition“. Sustainability 11, Nr. 1 (03.01.2019): 198. http://dx.doi.org/10.3390/su11010198.
Der volle Inhalt der QuelleWicks, Russell, Jegdish Babu, Franklin Garcia-Godoy und Vinay Jain. „Comparison of Fungal Biofilm Formation on Three Contemporary Denture Base Materials“. International Journal of Experimental Dental Science 4, Nr. 2 (2015): 104–8. http://dx.doi.org/10.5005/jp-journals-10029-1106.
Der volle Inhalt der QuelleBengtsson, M., S. Wallström, M. Sjöholm, R. Grönlund, B. Anderson, A. Larsson, S. Karlsson, S. Kröll und S. Svanberg. „Fungus Covered Insulator Materials Studied with Laser-Induced Fluorescence and Principal Component Analysis“. Applied Spectroscopy 59, Nr. 8 (August 2005): 1037–41. http://dx.doi.org/10.1366/0003702054615214.
Der volle Inhalt der QuellePaiva, Weslley de Souza, Francisco Ernesto de Souza Neto, Erika de Souza Paiva und Anabelle Camarotti de Lima Batista. „Fungal chitosan as membranous material modified by atmospheric plasma“. Research, Society and Development 10, Nr. 1 (04.01.2021): e9210111543. http://dx.doi.org/10.33448/rsd-v10i1.11543.
Der volle Inhalt der QuelleAndersen, Birgitte, Jens C. Frisvad, Ib Søndergaard, Ib S. Rasmussen und Lisbeth S. Larsen. „Associations between Fungal Species and Water-Damaged Building Materials“. Applied and Environmental Microbiology 77, Nr. 12 (29.04.2011): 4180–88. http://dx.doi.org/10.1128/aem.02513-10.
Der volle Inhalt der QuelleHAQ, ANWAR-UL, ZAFARULLAH QAZI und SAFDAR HASHMI. „FUNGAL KERATITIS“. Professional Medical Journal 13, Nr. 02 (25.06.2006): 253–58. http://dx.doi.org/10.29309/tpmj/2006.13.02.5022.
Der volle Inhalt der QuelleDissertationen zum Thema "Fungal material"
Wijayarathna, Egodagedara Ralalage Kanishka Bandara. „Development of Fungal Leather-like Material from Bread Waste“. Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-25522.
Der volle Inhalt der QuelleCardias, Maria de Fatima Castro. „The protection of wood against fungal decay by isocyanate chemical modification“. Thesis, Bangor University, 1992. https://research.bangor.ac.uk/portal/en/theses/the-protection-of-wood-against-fungal-decay-by-isocyanate-chemical-modification(0e432d60-3e1c-4a5d-977f-09a7330f378c).html.
Der volle Inhalt der QuelleDupin, Isabelle Valérie Simone. „Production and localisation of haze protective material from Saccharomyces cerevisiae /“. Title page, table of contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phd934.pdf.
Der volle Inhalt der QuellePeterson, Robert. „Interaction Effect of Filler Material on Fungal Biomass Activity for Heavy Metal Biosorption in Stormwater“. Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-14984.
Der volle Inhalt der QuelleSom en påföljd av de konsekvenser som klimatförändringen har orsakat, som till exempel svåra torkor tillsammans med en ökande världsbefolkning, har det blivit av allt större vikt att hanteringen av sötvatten sker på ett mer ansvarsfullt och hållbart sätt. Stormvatten brukar inte behandlas överhuvudtaget utan släpps tillbaka i miljön tillsammans med föroreningarna som det samlat på sig under sin väg, bland annat tungmetaller.Det finns redan ett antal metoder för att minska koncentrationen av tungmetaller i vatten, dock inte utan ekonomiska och praktiska svårigheter. Hur som helst så har det forskats en del kring en relativt ny metod som har tidigare visat goda resultat och skulle kunna konkurrera med befintliga lösningar, nämligen biosorption. I denna studie har man utforskat möjligheten att använda svampen Rhizopus oryzae tillsammans med ett organiskt fyllmedelsmaterial för biosorptionen av tungmetaller i stormvatten. De tungmetaller som undersöktes var Zn, Cu och Fe. Dessutom har man undersökt effekterna av ett förbehandlingssteg hos biomassan med NaOH tillsammans med det optimala förhållandet mellan biomassan och fyllemedelsmaterialet och retentionstiden för att maximera biosorptionen. Förbehandlingssteget visade en markant förbättring av biosorptionen. Fyllemedelsmaterialet hade för övrigt också en positiv inverkan genom att ytterligare öka biosorptionen. Ett 4:1 förhållande mellan biomassan och fyllemedelsmaterialet resulterade i det optimala förhållandet för komponenterna med tanke på biosorptionen. För retentionstiden visade det sig de bästa resultaten erhålles vid 2 timmar i lösningen. Emellertid visade det sig att användningen av den förbehandlade svampen tillsammans med fyllemedelsmaterialet inte var effektivt på stormvatten med en väldig låg tungmetallkoncentration, ungefär mellan 4 till 10 ppb. I framtiden skulle det vara intressant att undersöka inte bara metodens genomförbarhet på stormvatten med högre metallkoncentrationer, utan även hur pH-värde samt temperatur kan påverka resultaten.
Emygdio, Ana Paula Mendes. „Identificação de bioaerossóis de origem fúngica na cidade de SãoPaulo“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/100/100136/tde-22042016-190752/.
Der volle Inhalt der QuelleAlthough the biogenic components of Particulate Matter (PM) can have a direct relationship with the outbreak of respiratory diseases and can be linked to changes in climate processes there are very few studies related to its characterization in the atmospheric aerosols. Among the bioaerosols, the airborne fungi were studied, and the Basidiomycota, Ascomycota and Mitosporic fungi were the main characterized. The goal of this work was to estimate the contribution of the fungal aerosol to the RMSP atmosphere, with samplings in two sites: Cidade universitária (USP) and Pico do Jaraguá (PJ). For that, the fungi types were characterized using an optical microscope and it was estimated the mass of the fungal aerosol using biomarkers. Sampling was carried out during 2013, 2014 and 2015 with the \"Burkard 7-day Recording Sampler\", and in 2015, filters were sampled with the \"Airmetrics MiniVol portable Sampler. It was identified and determined the concentration of the fungi types observed in the RMSP atmosphere, and were found 39 main groups of fungi. The main group was the Basidiomycota. The mean concentration of the total fungi was 5736 (± 2459) spores/m³ per day. The Ascomycota, Basidiomycota and the mitosporic fungi correlated in different ways with the meteorological variables. A variation of the spores concentration during different times of the day was observed, with the occurrence of the highest concentration of spores at dawn, possibly due to weather conditions (high humidity and cooler temperatures), but the concentration of the mitosporic fungi was higher during the afternoon, mainly due to the spores release mechanisms. In the summer and spring were observed higher concentrations of Ascospores and Basidiospores and in the autumn and winter were obtained higher concentration of Mitospores. Besides that, it was also observed a positive and significant correlation between the fungal spore with the particulate matter, indicating that both are influenced in the same way by weather variables and/or has a common source such as soil resuspension. Arabitol, Mannitol, Threitol and the fungi spores are positive correlated, indicating that these three sugar alcohols can be a tracer for fungi spores in the atmosphere. Using the conversion factor proposed in the literature was possible to estimate that 2% of the PM10 concentration and 8% of the OC concentration it is due to fungi spores, indicating its importance. Using receptor modeling it was identified six sources for PM10, the biomass burning resulting from industrial processes, the biomass burning resulting from vegetation burning, the fungal aerosol, the secondary formation aerosol, the soil resuspension and vehicular emission. These results are a breakthrough for research on bioaerosols in Brazil, since many of this analyzes had never been performed in urban areas in Brazil
Pita, Guerreiro Maria. „MYCELIUM MILLENNIUM“. Thesis, Konstfack, Industridesign, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:konstfack:diva-7324.
Der volle Inhalt der QuelleTascioglu, Cihat. „Impact of Preservative Treatments and Fungal Exposure on Phenolic Fiber Reinforced Polymer (FRP) Composite Material Utilized in Wood Reinforcement“. Fogler Library, University of Maine, 2002. http://www.library.umaine.edu/theses/pdf/TasciogluC2002.pdf.
Der volle Inhalt der QuelleKaramanlioglu, Mehlika. „Environmental degradation of the compostable plastic packaging material poly(lactic) acid and its impact on fungal communities in compost“. Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/environmental-degradation-of-the-compostable-plastic-packaging-material-polylactic-acid-and-its-impact-on-fungal-communities-in-compost(6caccf89-2f88-461c-999b-8d89c6be67e9).html.
Der volle Inhalt der QuelleSeo, Sung-Chul. „Development and Application of a New Methodology for Separation and Analysis of Submicrometer-Sized Fungal Particles in Laboratory and Field Study“. University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1193877506.
Der volle Inhalt der QuelleMarques, Natália Paganini [UNESP]. „Prospecção de enzimas de degradação de materials vegetal em fungos endofíticos“. Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/88017.
Der volle Inhalt der QuelleOs fungos filamentosos são conhecidos por sua notável capacidade de produção de enzimas, particularmente as de degradação de material vegetal. O campo de aplicações industriais destas enzimas tem crescido consideravelmente, especialmente em relação às celulases, que tem sido extensivamente estudadas visando à sacarificação da celulose para a obtenção de etanol de segunda geração. Os fungos endofíticos estão entre os potenciais produtores de enzimas de degradação de material vegetal, são pouco estudados neste sentido e, uma vez que colonizam os tecidos vegetais, suas enzimas devem apresentar características interessantes do ponto de vista do ataque aos componentes da parede celular. Dentro deste contexto, o presente estudo teve por finalidade a prospecção de celulases, xilanases, pectinases e amilases entre fungos endofíticos, bem como estudos da produção e das características das enzimas. Inicialmente, 14 fungos endofíticos foram cultivados por fermentação estado sólido (FES) em bagaço de cana-de-açúcar e farelo de trigo (1:1 m/m), durante 7 dias, a 28 °C. Nesta etapa, 8 fungos se destacaram na produção de celulases e foram posteriormente cultivados, em FES, em outras misturas de substratos lignocelulósicos. Os isolados Botryosphaeria sp. AM01 e Saccharicola sp. EJC04 foram os mais versáteis em relação à produção das enzimas em diferentes meios, sendo selecionados para dar continuidade ao trabalho. A partir desta etapa foram focadas as produções de celulases e xilanases, visando à aplicação destas enzimas em trabalhos futuros envolvendo a sacarificação de materiais lignocelulósicos. O substrato selecionado foi composto por farelo de algodão e farelo de trigo e a influência do tempo de cultivo, da concentração de inóculo e da umidade inicial do substrato foram avaliadas, pelo cultivo em...
Filamentous fungi are known for their remarkable ability for enzymes production, particularly those for plant material degradation. The field of industrial applications of these enzymes has increased considerably, particularly regarding to cellulases which have been extensively studied for cellulose saccharification aiming the production of second generation ethanol. Endophytic fungi are among the potential producers of enzymes for plant material degradation. They are underexplored in this sense and, once they colonize the plant tissues. Their enzymes should present interesting features from the point of view of the attack to the cell wall components. In this context, the present study had as purpose the prospecting of cellulases, xylanases, pectinases and amylases among endophytic fungi, as well as studies of the enzymes production and characteristics. As an initial evaluation of enzymes production, 14 endophytic fungi were cultivated under solid state fermentation (SSF) in sugar cane bagasse and wheat bran (1:1 w/w), for 7 days, at 28 ºC. In this phase, 8 fungi stood out and were subsequently cultivated by SSF, in other mixtures of lignocellulosic substrates. The isolates Botryosphaeria sp. AM01 and Saccharicola sp. EJC04 were the most versatile in relation to enzymes production on different substrates and were selected to continue the work. From this stage on the productions of cellulases and xylanases were focused, aiming the application of these enzymes in future studies involving the saccharification of lignocellulosic materials. The selected substrate was composed by cotton bran and wheat bran and the influence of cultivation time, concentration of inoculum and substrate initial moisture were evaluated, by FES.For almost all the enzymes produced by the two fungi, the peak of production occurred in 192h or... (Complete abstract click electronic access below)
Bücher zum Thema "Fungal material"
Arun, Arya, Hrsg. Studies on some fungal biodeteriogens. Delhi: Bharatiya Kala Prakashan, 2000.
Den vollen Inhalt der Quelle findenThe material culture of death in medieval Japan. Honolulu: University of Hawaii Press, 2009.
Den vollen Inhalt der Quelle findenTortić, Milica. Materials for the mycoflora of Macedonia (Yugoslavia). Skopje: Macedonian Academy of Sciences and Arts, 1988.
Den vollen Inhalt der Quelle findenMaksimenkov, G. A. Materialy po ranneĭ istorii tagarskoĭ kulʹtury. Sankt-Peterburg: PV, 2003.
Den vollen Inhalt der Quelle findenVerona, Onorato. Il vasto mondo dei funghi: Distruttori e rigeneratori della materia. Bologna: Edagricole, 1985.
Den vollen Inhalt der Quelle findenDoveri, F. Fungi fimicoli italici: A guide to the recognition of basidiomycetes and ascomycetes living on faecal material = guida al riconoscimento dei basidiomiceti e degli ascomiceti che vivono su materia fecale. Trento: Associazione micologica Bresadola, 2004.
Den vollen Inhalt der Quelle findenThe fungal pharmacy: The complete guide to medicinal mushrooms and lichens of North America. Berkeley, Calif: North Atlantic Books, 2011.
Den vollen Inhalt der Quelle findenAnikin, V. V. Materialy dli︠a︡ Krasnoĭ knigi Respubliki Kalmykii︠a︡. Ėlista: Kalmyt︠s︡kiĭ gos. universitet, 2005.
Den vollen Inhalt der Quelle findenArfman, William R. Analysing Allerzielen Alom: Material culture in an emerging rite. Leiden: Sidestone Press, 2011.
Den vollen Inhalt der Quelle findenB, Yeats W. Parnell's funeral and other poems from A full moon in March: Manuscript materials. Ithaca, N.Y: Cornell University Press, 2003.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Fungal material"
He, Yu-Cai, Cui-Luan Ma und Bin Yang. „Pretreatment Process and Its Synergistic Effects on Enzymatic Digestion of Lignocellulosic Material“. In Fungal Cellulolytic Enzymes, 1–25. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0749-2_1.
Der volle Inhalt der QuelleSantos, Cledir, Paula Galeano, Reginaldo Lima Neto, Manoel Marques Evangelista Oliveira und Nelson Lima. „MALDI-TOF MS and its requirements for fungal identification.“ In Trends in the systematics of bacteria and fungi, 119–40. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244984.0119.
Der volle Inhalt der QuelleBridge, Paul. „Can older fungal sequence data be useful?“ In Trends in the systematics of bacteria and fungi, 69–82. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244984.0069.
Der volle Inhalt der QuelleGullino, M. Lodovica, Giovanna Gilardi und Angelo Garibaldi. „Seed-Borne Fungal Pathogens of Leafy Vegetable Crops“. In Global Perspectives on the Health of Seeds and Plant Propagation Material, 47–56. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9389-6_4.
Der volle Inhalt der QuelleVannacci, Giovanni, Sabrina Sarrocco und Angelo Porta-Puglia. „Improved Detection and Monitoring of Seed-Borne Fungal Plant Pathogens in Europe“. In Global Perspectives on the Health of Seeds and Plant Propagation Material, 67–85. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9389-6_6.
Der volle Inhalt der QuelleGalanopoulou, Anastasia P., und Dimitris G. Hatzinikolaou. „Fungi in Consolidated Bioprocessing of Lignocellulosic Materials“. In Fungal Applications in Sustainable Environmental Biotechnology, 275–305. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42852-9_11.
Der volle Inhalt der QuelleAdan, Olaf C. G. „The fungal resistance of interior finishing materials“. In Fundamentals of mold growth in indoor environments and strategies for healthy living, 335–52. Wageningen: Wageningen Academic Publishers, 2011. http://dx.doi.org/10.3920/978-90-8686-722-6_12.
Der volle Inhalt der QuelleKaiser, J. P., S. Trümpler und P. Raschle. „Fungal Growth on Medieval Glass Paintings“. In Microbially Influenced Corrosion of Materials, 353–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80017-7_25.
Der volle Inhalt der QuelleSvecova, Lenka, Martin Kubal und Eric Guibal. „Waste Fungal Biomass for Mercury Biosorption – Column Studies“. In Advanced Materials Research, 623–26. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-452-9.623.
Der volle Inhalt der QuelleSingla, Amneesh, S. Krishna Moorthi und Adil Rahiman. „Electrochemical Materials from the Fungal Mineralization of Manganese“. In Springer Proceedings in Energy, 31–37. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63085-4_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fungal material"
Grajdieru, Cristina. „Molecular identification of Aflatoxin-producing aspergillus strains in maize seed-material“. In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.66.
Der volle Inhalt der QuelleVASILIAUSKIENĖ, Dovilė, Giedrius BALČIŪNAS und Jaunius URBONAVIČIUS. „ISOLATION AND IDENTIFICATION OF FUNGI GROWING ON FIBRE HEMP SHIVE BASED THERMAL INSULATION MATERIALS“. In Conference for Junior Researchers „Science – Future of Lithuania“. VGTU Technika, 2018. http://dx.doi.org/10.3846/aainz.2018.007.
Der volle Inhalt der QuelleLigne, L., J. Bulcke, J. Baetens, B. Baets und J. Acker. „Bio-Based Building Materials-How to Unravel the Role of Material Characteristics on Fungal Susceptibility?“ In XV International Conference on Durability of Building Materials and Components. CIMNE, 2020. http://dx.doi.org/10.23967/dbmc.2020.195.
Der volle Inhalt der QuelleChou, Fong-In, Chia-Chin Li, Tzung-Yuang Chen und Hsiao-Wei Wen. „Microbial Occurrence in Bentonite-Based Buffer Materials of a Final Disposal Site for Low Level Radioactive Waste in Taiwan“. In ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40284.
Der volle Inhalt der QuelleSidarenka, A. V., H. A. Bareika, L. N. Valentovich, D. S. Paturemski, V. N. Kuptsou, M. A. Titok und E. I. Kalamiyets. „Molecular diagnostics of bacterial and fungal plant diseases“. In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.229.
Der volle Inhalt der QuelleRobertson, Owen, Frederik Høgdal, Lukas Mckay und Torben Lenau. „Fungal Future: A review of mycelium biocomposites as an ecological alternative insulation material“. In Proceedings of NordDesign 2020. The Design Society, 2020. http://dx.doi.org/10.35199/norddesign2020.18.
Der volle Inhalt der QuelleFortuna, Jorge Luiz. „FUNGA CULTURAL: MICOLOGIA FILATÉLICA DO BRASIL“. In II Congresso Brasileiro de Ciências Biológicas On-line. Revista Multidisciplinar de Educação e Meio Ambiente, 2021. http://dx.doi.org/10.51189/rema/1233.
Der volle Inhalt der QuellePiecková, E., Z. Pivovarová, Z. Sternová und E. Droba. „Building materials vs. fungal colonization–model experiments“. In ENVIRONMENTAL HEALTH RISK 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/ehr070081.
Der volle Inhalt der QuelleStetzenbach, L., M. Buttner und P. Cruz-Perez. „243. Fungal Spores Aerosolized from Contaminated Flooring Materials“. In AIHce 1999. AIHA, 1999. http://dx.doi.org/10.3320/1.2763087.
Der volle Inhalt der QuelleNunes, L;. „Fungal degradation of wood in buildings“. In RILEM International Conference on Microbial Impact on Building Materials. RILEM Publications SARL, 2003. http://dx.doi.org/10.1617/2351580184.009.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Fungal material"
Jones, Robert M., Alison K. Thurston, Robyn A. Barbato und Eftihia V. Barnes. Evaluating the Conductive Properties of Melanin-Producing Fungus, Curvularia lunata, after Copper Doping. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38641.
Der volle Inhalt der QuelleShah, Manish M. Bio-Treatment of Energetic Materials Using White-Rot Fungus. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/1405063.
Der volle Inhalt der QuelleMM Shah. Bio-Treatment of Energetic Materials Using White-Rot Fungus. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/1830.
Der volle Inhalt der QuelleStoyancheva, Galina, Ekaterina Krumova, Nedelina Kostadinova, Jeny Miteva-Staleva, Petar Grozdanov, Mohamed F. Ghaly, Akmal A. Sakr und Maria Angelova. Biodiversity of Contaminant Fungi at Different Coloured Materials in Ancient Egypt Tombs and Mosques. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, Juli 2018. http://dx.doi.org/10.7546/crabs.2018.07.06.
Der volle Inhalt der Quelle