Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fundamental Theorem of Finance“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fundamental Theorem of Finance" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fundamental Theorem of Finance"
Brown, Martin, und Tomasz Zastawniak. „Fundamental Theorem of Asset Pricing under fixed and proportional transaction costs“. Annals of Finance 16, Nr. 3 (26.05.2020): 423–33. http://dx.doi.org/10.1007/s10436-020-00367-z.
Der volle Inhalt der QuelleChernyi, A. S. „The vector stochastic integral in the first fundamental theorem of the mathematics of finance“. Russian Mathematical Surveys 53, Nr. 4 (31.08.1998): 866–67. http://dx.doi.org/10.1070/rm1998v053n04abeh000062.
Der volle Inhalt der QuelleGuasoni, Paolo, Miklós Rásonyi und Walter Schachermayer. „The fundamental theorem of asset pricing for continuous processes under small transaction costs“. Annals of Finance 6, Nr. 2 (09.12.2008): 157–91. http://dx.doi.org/10.1007/s10436-008-0110-x.
Der volle Inhalt der QuelleBIELECKI, TOMASZ R., IGOR CIALENCO, ISMAIL IYIGUNLER und RODRIGO RODRIGUEZ. „DYNAMIC CONIC FINANCE: PRICING AND HEDGING IN MARKET MODELS WITH TRANSACTION COSTS VIA DYNAMIC COHERENT ACCEPTABILITY INDICES“. International Journal of Theoretical and Applied Finance 16, Nr. 01 (Februar 2013): 1350002. http://dx.doi.org/10.1142/s0219024913500027.
Der volle Inhalt der QuelleTeeple, Keisuke. „Surprise and default in general equilibrium“. Theoretical Economics 18, Nr. 4 (2023): 1547–83. http://dx.doi.org/10.3982/te4943.
Der volle Inhalt der QuelleALLAJ, ERINDI. „IMPLICIT TRANSACTION COSTS AND THE FUNDAMENTAL THEOREMS OF ASSET PRICING“. International Journal of Theoretical and Applied Finance 20, Nr. 04 (27.04.2017): 1750024. http://dx.doi.org/10.1142/s0219024917500248.
Der volle Inhalt der QuelleAcciaio, B., M. Beiglböck, F. Penkner und W. Schachermayer. „A MODEL-FREE VERSION OF THE FUNDAMENTAL THEOREM OF ASSET PRICING AND THE SUPER-REPLICATION THEOREM“. Mathematical Finance 26, Nr. 2 (06.12.2013): 233–51. http://dx.doi.org/10.1111/mafi.12060.
Der volle Inhalt der QuelleALLEN, DOUGLAS W. „The Coase theorem: coherent, logical, and not disproved“. Journal of Institutional Economics 11, Nr. 2 (28.02.2014): 379–90. http://dx.doi.org/10.1017/s1744137414000083.
Der volle Inhalt der QuelleFRAHM, GABRIEL. „CORRIGENDUM: “PRICING AND VALUATION UNDER THE REAL-WORLD MEASURE”“. International Journal of Theoretical and Applied Finance 21, Nr. 04 (Juni 2018): 1892001. http://dx.doi.org/10.1142/s0219024918920012.
Der volle Inhalt der QuelleVazifedan, Mehdi, und Qiji Jim Zhu. „No-Arbitrage Principle in Conic Finance“. Risks 8, Nr. 2 (19.06.2020): 66. http://dx.doi.org/10.3390/risks8020066.
Der volle Inhalt der QuelleDissertationen zum Thema "Fundamental Theorem of Finance"
Gallo, Andrea. „The Kolmogorov Operator and its Applications in Finance“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13815/.
Der volle Inhalt der QuelleShibalovich, Paul. „Fundamental theorem of algebra“. CSUSB ScholarWorks, 2002. https://scholarworks.lib.csusb.edu/etd-project/2203.
Der volle Inhalt der QuelleSingh, Jesper. „On the fundamental theorem of calculus“. Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-103809.
Der volle Inhalt der QuelleRiemannintegralen har många brister. Vissa utav dessa ser man i integralkalkylens huvudsats. Huvudmålet med denna uppsats är att introducera gauge integralen och visa en mer lämplig version av huvudsatsen.
Backwell, Alex. „Recovery theorem: expounded and applied“. Master's thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/8531.
Der volle Inhalt der QuelleThis dissertation is concerned with Ross' (2011) Recovery Theorem. It is generally held that a forward-looking probability distribution is unobtainable from derivative prices, because the market's risk-preferences are conceptually inextricable from the implied real-world distribution. Ross' result recovers this distribution without making the strong preference assumptions assumed necessary under the conventional paradigm. This dissertation aims to give the reader a thorough understanding of Ross Recovery, both from a theoretical and practical point of view. This starts with a formal delineation of the model and proof of the central result, motivated by the informal nature of Ross' working paper. This dissertation relaxes one of Ross' assumptions and arrives at the equivalent conclusion. This is followed by a critique of the model and assumptions. An a priori discussion only goes so far, but potentially problematic assumptions are identified, chief amongst which being time additive preferences of a representative agent. Attention is then turned to practical application of the theorem. The author identifies a number of obstacles to applying the result { some of which are somewhat atypical and have not been directly addressed in the literature { and suggests potential solutions. A salient obstacle is calibrating a state price matrix. This leads to an implementation of Ross Recovery on the FTSE/JSE Top40. The suggested approach is found to be workable, though certainly not the final word on the matter. A testing framework for the model is discussed and the dissertation is concluded with a consideration of the findings and the theorem's applicability.
McCallum, Rupert Gordon Mathematics & Statistics Faculty of Science UNSW. „Generalisations of the fundamental theorem of projective geometry“. Publisher:University of New South Wales. Mathematics & Statistics, 2009. http://handle.unsw.edu.au/1959.4/43385.
Der volle Inhalt der QuelleCohen, Jeremy S. (Jeremy Stein) 1975. „Implementation and application of the fundamental theorem of probability“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/46277.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 64-65).
The "RIK" (Reasoning with Incomplete Knowledge) algorithm, a mathematical programming based algorithm for performing probabilistic inference on (possibly) incompletely specified systems of discrete events is reviewed and implemented. Developed by Myers, Freund, and Kaufman, it is a tractable reformulation of the computational approach implicit to the Fundamental Theorem of Probability as stated by De Finetti and extended by Lad, Dickey and Rahman. Enhancements to the original algorithm are presented and several applications of the algorithm to real-world systems including fault trees and belief networks are explored. The system is solved successfully for moderately large problems, providing practical information for system designers coping with uncertainty.
by Jeremy S. Cohen.
M.Eng.and S.B.
Hayes, Mark Gerard. „Investment and finance under fundamental uncertainty“. Thesis, University of Sunderland, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275518.
Der volle Inhalt der QuelleDelbaen, Freddy, und Walter Schachermayer. „The fundamental theorem of asset pricing for unbounded stochastic processes“. SFB Adaptive Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business, 1999. http://epub.wu.ac.at/850/1/document.pdf.
Der volle Inhalt der QuelleSeries: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
Bartolini, Gabriel. „On Poicarés Uniformization Theorem“. Thesis, Linköping University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7968.
Der volle Inhalt der QuelleA compact Riemann surface can be realized as a quotient space $\mathcal{U}/\Gamma$, where $\mathcal{U}$ is the sphere $\Sigma$, the euclidian plane $\mathbb{C}$ or the hyperbolic plane $\mathcal{H}$ and $\Gamma$ is a discrete group of automorphisms. This induces a covering $p:\mathcal{U}\rightarrow\mathcal{U}/\Gamma$.
For each $\Gamma$ acting on $\mathcal{H}$ we have a polygon $P$ such that $\mathcal{H}$ is tesselated by $P$ under the actions of the elements of $\Gamma$. On the other hand if $P$ is a hyperbolic polygon with a side pairing satisfying certain conditions, then the group $\Gamma$ generated by the side pairing is discrete and $P$ tesselates $\mathcal{H}$ under $\Gamma$.
Lacaussade, Charles-Thierry. „Evaluation d'actifs financiers et frictions de marché“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD021.
Der volle Inhalt der QuelleThis thesis aims to provide innovative theoretical and empirical methods for valuing securities to economics researchers, market makers, and participants, including brokers, dealers, asset managers, and regulators. We propose an extension of the Fundamental Theorem of Asset Pricing (FTAP) tailored to markets with financial frictions. Hence, our asset pricing methodologies allow for more tractable bid and ask prices, as observed in the financial market. This thesis provides both theoretical models and an empirical application of the pricing rule with bid-ask spreads.In our first chapter, we introduce two straightforward closed-form pricing expressions for securities in two-date markets, encompassing a variety of frictions (transaction cost, taxes, commission fees). This result relies on a novel absence of arbitrage condition tailored to the market with frictions considering potential buy and sell strategies. Furthermore, these asset pricing models both rely on non-additive probability measures. The first is a Choquet pricing rule, for which we offer a particular case adapted for calibration, and the second is a Multiple Priors pricing rule.In the second chapter, as a step toward generalizing our asset pricing models, we provide the necessary and sufficient conditions for multi-period pricing rules characterized by bid-ask spreads. We extend the multi-period version of the Fundamental Theorem of Asset Pricing by assuming the existence of market frictions. We show that it is possible to model a dynamic multi-period pricing problem with a one-stage pricing problem when the filtration is frictionless, which is equivalent to assuming the martingale property, which is equivalent to assuming price consistency.Finally, in the third chapter, we give the axiomatization of a particular class of Choquet pricing rule, namely Rank-Dependent pricing rules assuming the absence of arbitrage and put-call parity. Rank-dependent pricing rules have the appealing feature of being easily calibrated because the non-additive probability measure takes the form of a distorted objective probability. Therefore, we offer an empirical study of these Rank-Dependent pricing rules through a parametric calibration on market data to explore the impact of market frictions on prices. We also study the empirical validity of the put-call parity. Furthermore, we investigate the impact of time to expiration (time value) and moneyness (intrinsic value) on the shape of the distortion function. The resulting rank-dependent pricing rules always exhibit a greater accuracy than the benchmark (FTAP). Finally, we relate the market frictions to the market's risk aversion
Bücher zum Thema "Fundamental Theorem of Finance"
Fine, Benjamin, und Gerhard Rosenberger. The Fundamental Theorem of Algebra. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1928-6.
Der volle Inhalt der QuelleBenjamin, Fine. The fundamental theorem of algebra. New York: Springer, 1997.
Den vollen Inhalt der Quelle findenNational Institute of Public Finance and Policy (India), Hrsg. The second fundamental theorem of positive economics. New Delhi: National Institute of Public Finance and Policy, 2012.
Den vollen Inhalt der Quelle findenRoss, Stephen A. Fundamentals of corporate finance. 5. Aufl. Boston: Irwin/McGraw-Hill, 2000.
Den vollen Inhalt der Quelle findenRoss, Stephen A. Fundamentals of corporate finance. 2. Aufl. Homewood, IL: Irwin, 1993.
Den vollen Inhalt der Quelle findenRoss, Stephen A. Fundamentals of corporate finance. 6. Aufl. Boston, Mass: McGraw-Hill/Irwin, 2003.
Den vollen Inhalt der Quelle findenRoss, Stephen A. Fundamentals of corporate finance. 8. Aufl. Boston: McGraw-Hill/Irwin, 2008.
Den vollen Inhalt der Quelle findenRoss, Stephen A. Fundamentals of corporate finance. 6. Aufl. Boston, Mass: McGraw-Hill/Irwin, 2003.
Den vollen Inhalt der Quelle findenRoss, Stephen A. Fundamentals of corporate finance. 4. Aufl. Boston: Irwin/McGraw-Hill, 1998.
Den vollen Inhalt der Quelle findenRoss, Stephen A. Fundamentals of corporate finance. 4. Aufl. Boston, Mass: Irwin/McGraw-Hill, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Fundamental Theorem of Finance"
Elliott, Robert J., und P. Ekkehard Kopp. „The Fundamental Theorem of Asset Pricing“. In Springer Finance, 45–61. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4757-7146-6_3.
Der volle Inhalt der QuelleJohnson, Timothy. „The Fundamental Theorem of Asset Pricing“. In Ethics in Quantitative Finance, 221–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61039-9_11.
Der volle Inhalt der QuelleKardaras, Constantinos. „Finitely Additive Probabilities and the Fundamental Theorem of Asset Pricing“. In Contemporary Quantitative Finance, 19–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03479-4_2.
Der volle Inhalt der QuelleDybvig, H., und S. A. Ross. „The Fundamental Theorems of Asset Pricing“. In Mathematical Finance and Probability, 191–99. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8041-1_11.
Der volle Inhalt der QuelleFrittelli, Marco, und Peter Lakner. „Arbitrage and Free Lunch in a General Financial Market Model; The Fundamental Theorem of Asset Pricing“. In Mathematical Finance, 89–92. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4757-2435-6_7.
Der volle Inhalt der QuelleMcClain, William Martin. „The fundamental theorem“. In Symmetry Theory in Molecular Physics with Mathematica, 73–79. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/b13137_7.
Der volle Inhalt der QuellePackel, Ed, und Stan Wagon. „The Fundamental Theorem“. In Animating Calculus, 115–25. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2408-2_11.
Der volle Inhalt der QuelleEdwards, Harold M. „A Fundamental Theorem“. In Essays in Constructive Mathematics, 13–45. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98558-5_1.
Der volle Inhalt der QuelleKönig, Steffen. „Rickard's fundamental theorem“. In Lecture Notes in Mathematics, 33–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0096369.
Der volle Inhalt der QuelleBorgstede, Matthias. „Fisher’s Fundamental Theorem“. In Encyclopedia of Sexual Psychology and Behavior, 1–4. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-08956-5_994-1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fundamental Theorem of Finance"
Stepanova, Maria. „APPLYING KOLMOGOROV COMPLEXITY FOR HIGH LOAD BALANCING BETWEEN DISTRIBUTED COMPUTING SYSTEM NODES“. In eLSE 2019. Carol I National Defence University Publishing House, 2019. http://dx.doi.org/10.12753/2066-026x-19-050.
Der volle Inhalt der QuelleHou, Bo, Zilong Zhang und Bingling Cai. „The Fundamental Theorem of Entwined Modules“. In 2009 International Conference on Computational Intelligence and Software Engineering. IEEE, 2009. http://dx.doi.org/10.1109/cise.2009.5365484.
Der volle Inhalt der QuelleCHEN, WEI. „IDEOLOGICAL AND POLITICAL THEORIES TEACHING IN COMPREHENSIVE BUSINESS ENGLISH TEACHING“. In 2021 International Conference on Education, Humanity and Language, Art. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/dtssehs/ehla2021/35735.
Der volle Inhalt der QuelleWolf, Emil. „On the fundamental theorem of diffraction tomography“. In 16th Congress of the International Commission for Optics: Optics as a Key to High Technology. SPIE, 1993. http://dx.doi.org/10.1117/12.2308674.
Der volle Inhalt der QuelleLeng, Shukun, Dakai Guo und Wensheng Yu. „Formalization of Dedekind Fundamental Theorem in Coq“. In 2023 China Automation Congress (CAC). IEEE, 2023. http://dx.doi.org/10.1109/cac59555.2023.10450761.
Der volle Inhalt der QuelleHu, Ping, Kenneth W. Shum und Chi Wan Sung. „The fundamental theorem of distributed storage systems revisited“. In 2014 IEEE Information Theory Workshop (ITW). IEEE, 2014. http://dx.doi.org/10.1109/itw.2014.6970793.
Der volle Inhalt der QuelleMirin, Alison. „Function identity and the fundamental theorem of calculus“. In 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. PMENA, 2020. http://dx.doi.org/10.51272/pmena.42.2020-187.
Der volle Inhalt der QuelleSivanesan, Vishagan. „A No Go Theorem for Gallileon like ``Odd P-Forms''“. In Frontiers of Fundamental Physics 14. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.224.0198.
Der volle Inhalt der QuelleKliber, Pawel, und Anna Rutkowska-Ziarko. „AN ALGORITHM FOR CONSTRUCTION OF A PORTFOLIO WITH A FUNDAMENTAL CRITERION“. In 11th Economics & Finance Conference, Rome. International Institute of Social and Economic Sciences, 2019. http://dx.doi.org/10.20472/efc.2019.011.009.
Der volle Inhalt der QuelleFalkensteiner, Sebastian, Cristhian Garay-López, Mercedes Haiech, Marc Paul Noordman, Zeinab Toghani und François Boulier. „The fundamental theorem of tropical partial differential algebraic geometry“. In ISSAC '20: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3373207.3404040.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Fundamental Theorem of Finance"
Beck, Thorsten. Long-term Finance in Latin America: A Scoreboard Model. Inter-American Development Bank, August 2016. http://dx.doi.org/10.18235/0007018.
Der volle Inhalt der QuelleL��pez Fern��ndez, Jorge M., und Omar A. Hern��ndez Rodr��guez. Teaching the Fundamental Theorem of Calculus: A Historical Reflection. Washington, DC: The MAA Mathematical Sciences Digital Library, Januar 2012. http://dx.doi.org/10.4169/loci003803.
Der volle Inhalt der QuelleAlonso-Robisco, Andrés, José Manuel Carbó und José Manuel Carbó. Machine Learning methods in climate finance: a systematic review. Madrid: Banco de España, Februar 2023. http://dx.doi.org/10.53479/29594.
Der volle Inhalt der QuelleLucas, Brian, Kathryn Cheeseman und Nele Van Doninck. Transformative Change for Global Biodiversity: the Role of Gender Equality and Social Inclusion. Background Notes for the Wilton Park Conference, September 2024. Institute of Development Studies, Oktober 2024. http://dx.doi.org/10.19088/k4dd.2024.058.
Der volle Inhalt der QuelleTaşdemir, Murat, Ethem Hakan Ergeç, Hüseyin Kaya und Özer Selçuk. ECONOMY IN THE TURKEY OF THE FUTURE. İLKE İlim Kültür Eğitim Vakfı, Dezember 2020. http://dx.doi.org/10.26414/gt010.
Der volle Inhalt der QuelleTello-Casas, Patrocinio. El papel de China como acreedor financiero internacional. Madrid: Banco de España, November 2024. http://dx.doi.org/10.53479/38299.
Der volle Inhalt der Quelle