Zeitschriftenartikel zum Thema „Functionalized Graphenes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Functionalized Graphenes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Tene, Talia, Stefano Bellucci, Marco Guevara, Fabian Arias Arias, Miguel Ángel Sáez Paguay, John Marcos Quispillo Moyota, Melvin Arias Polanco et al. „Adsorption of Mercury on Oxidized Graphenes“. Nanomaterials 12, Nr. 17 (31.08.2022): 3025. http://dx.doi.org/10.3390/nano12173025.
Der volle Inhalt der QuelleTene, Talia, Fabian Arias Arias, Marco Guevara, Juan Carlos González García, Melvin Arias Polanco, Andrea Scarcello, Lorenzo S. Caputi, Stefano Bellucci und Cristian Vacacela Gomez. „Adsorption Kinetics of Hg(II) on Eco-Friendly Prepared Oxidized Graphenes“. Coatings 12, Nr. 8 (10.08.2022): 1154. http://dx.doi.org/10.3390/coatings12081154.
Der volle Inhalt der QuelleXu, Hangxun, und Kenneth S. Suslick. „Sonochemical Preparation of Functionalized Graphenes“. Journal of the American Chemical Society 133, Nr. 24 (22.06.2011): 9148–51. http://dx.doi.org/10.1021/ja200883z.
Der volle Inhalt der QuelleMoon, Hyun Gon, und Jin Hae Chang. „Syntheses and Characterizations of Functionalized Graphenes and Reduced Graphene Oxide“. Polymer Korea 35, Nr. 3 (31.05.2011): 265–71. http://dx.doi.org/10.7317/pk.2011.35.3.265.
Der volle Inhalt der QuelleMojica-Sánchez, Juan Pablo, Víctor Manuel Langarica-Rivera, Kayim Pineda-Urbina, Jorge Nochebuena, Gururaj Kudur Jayaprakash und Zeferino Gómez Sandoval. „Adsorption of glyphosate on graphene and functionalized graphenes: A DFT study“. Computational and Theoretical Chemistry 1215 (September 2022): 113840. http://dx.doi.org/10.1016/j.comptc.2022.113840.
Der volle Inhalt der QuelleHu, Bo, Lingdi Liu, Yanxu Zhao und Changli Lü. „A facile construction of quaternized polymer brush-grafted graphene modified polysulfone based composite anion exchange membranes with enhanced performance“. RSC Advances 6, Nr. 56 (2016): 51057–67. http://dx.doi.org/10.1039/c6ra06363b.
Der volle Inhalt der QuelleHeo, Cheol, und Jin-Hae Chang. „Syntheses and Characterizations of Position Specific Functionalized Graphenes“. Polymer Korea 37, Nr. 2 (25.03.2013): 218–24. http://dx.doi.org/10.7317/pk.2013.37.2.218.
Der volle Inhalt der QuelleHuang, Wenyi, Xilian Ouyang und L. James Lee. „High-Performance Nanopapers Based on Benzenesulfonic Functionalized Graphenes“. ACS Nano 6, Nr. 11 (29.10.2012): 10178–85. http://dx.doi.org/10.1021/nn303917p.
Der volle Inhalt der QuelleLi, Yuanzhen, Liying Zhang und Chao Wu. „Uncertainty in the separation properties of functionalized porous graphenes“. Applied Surface Science 525 (September 2020): 146524. http://dx.doi.org/10.1016/j.apsusc.2020.146524.
Der volle Inhalt der QuelleTene, Talia, Stefano Bellucci, Marco Guevara, Edwin Viteri, Malvin Arias Polanco, Orlando Salguero, Eder Vera-Guzmán et al. „Cationic Pollutant Removal from Aqueous Solution Using Reduced Graphene Oxide“. Nanomaterials 12, Nr. 3 (18.01.2022): 309. http://dx.doi.org/10.3390/nano12030309.
Der volle Inhalt der QuellePrasitnok, Khongvit, und Orrasa In‐noi. „Functionalized graphenes as nanofillers for polylactide: Molecular dynamics simulation study“. Polymer Composites 41, Nr. 1 (20.08.2019): 294–305. http://dx.doi.org/10.1002/pc.25369.
Der volle Inhalt der QuelleSteurer, Peter, Rainer Wissert, Ralf Thomann und Rolf Mülhaupt. „Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide“. Macromolecular Rapid Communications 30, Nr. 4-5 (18.02.2009): 316–27. http://dx.doi.org/10.1002/marc.200800754.
Der volle Inhalt der QuelleRezayi, Majid, Pegah Mahmoodi, Hadis Langari, Behzad Behnam und Amirhossein Sahebkar. „Conjugates of Curcumin with Graphene and Carbon Nanotubes: A Review on Biomedical Applications“. Current Medicinal Chemistry 27, Nr. 40 (26.11.2020): 6849–63. http://dx.doi.org/10.2174/0929867326666191113145745.
Der volle Inhalt der QuelleTachikawa, Hiroto, und Hiroshi Kawabata. „Electronic states of aryl radical functionalized graphenes: Density functional theory study“. Japanese Journal of Applied Physics 55, Nr. 6S1 (26.04.2016): 06GK05. http://dx.doi.org/10.7567/jjap.55.06gk05.
Der volle Inhalt der QuellePatel, Sanjay V., Stephen T. Hobson, Sabina Cemalovic und William K. Tolley. „Comparing Selectivity of Functionalized Graphenes Used for Chemiresistive Hydrocarbon Vapor Detection“. ACS Applied Nano Materials 1, Nr. 8 (13.07.2018): 4092–100. http://dx.doi.org/10.1021/acsanm.8b00852.
Der volle Inhalt der QuelleWhitby, Raymond L. D., Alina V. Korobeinyk, Vladimir M. Gun’ko, Daniel B. Wright, Gennaro Dichello, Lauren C. Smith, Takahiro Fukuda, Toru Maekawa, Julian R. Thorpe und Sergey V. Mikhalovsky. „Single-Layer Graphenes Functionalized with Polyurea: Architectural Control and Biomolecule Reactivity“. Journal of Physical Chemistry C 117, Nr. 22 (22.05.2013): 11829–36. http://dx.doi.org/10.1021/jp4022213.
Der volle Inhalt der QuelleZhao, Yang, Hua Bai, Yue Hu, Yan Li, Liangti Qu, Shaowen Zhang und Gaoquan Shi. „Electrochemical deposition of polyaniline nanosheets mediated by sulfonated polyaniline functionalized graphenes“. Journal of Materials Chemistry 21, Nr. 36 (2011): 13978. http://dx.doi.org/10.1039/c1jm12014j.
Der volle Inhalt der QuelleCollins, William R., Wiktor Lewandowski, Ezequiel Schmois, Joseph Walish und Timothy M. Swager. „Claisen Rearrangement of Graphite Oxide: A Route to Covalently Functionalized Graphenes“. Angewandte Chemie International Edition 50, Nr. 38 (08.08.2011): 8848–52. http://dx.doi.org/10.1002/anie.201101371.
Der volle Inhalt der QuelleYadav, Santosh Kumar, Yong Chae Jung, Jin Hee Kim, Yong-Il Ko, Hee Jeong Ryu, Mukesh Kumar Yadav, Yoong Ahm Kim und Jae Whan Cho. „Mechanically Robust, Electrically Conductive Biocomposite Films Using Antimicrobial Chitosan-Functionalized Graphenes“. Particle & Particle Systems Characterization 30, Nr. 8 (20.06.2013): 721–27. http://dx.doi.org/10.1002/ppsc.201300044.
Der volle Inhalt der QuelleCollins, William R., Wiktor Lewandowski, Ezequiel Schmois, Joseph Walish und Timothy M. Swager. „Claisen Rearrangement of Graphite Oxide: A Route to Covalently Functionalized Graphenes“. Angewandte Chemie 123, Nr. 38 (08.08.2011): 9010–14. http://dx.doi.org/10.1002/ange.201101371.
Der volle Inhalt der QuelleFu, Yu, Linshu Liu, Jinwen Zhang und William C. Hiscox. „Functionalized graphenes with polymer toughener as novel interface modifier for property-tailored polylactic acid/graphene nanocomposites“. Polymer 55, Nr. 24 (November 2014): 6381–89. http://dx.doi.org/10.1016/j.polymer.2014.10.014.
Der volle Inhalt der QuelleChoi, Bong Gill, Jinkee Hong, Young Chul Park, Doo Hwan Jung, Won Hi Hong, Paula T. Hammond und HoSeok Park. „Innovative Polymer Nanocomposite Electrolytes: Nanoscale Manipulation of Ion Channels by Functionalized Graphenes“. ACS Nano 5, Nr. 6 (06.05.2011): 5167–74. http://dx.doi.org/10.1021/nn2013113.
Der volle Inhalt der QuellePark, Solmon, und Dae Su Kim. „Preparation and physical properties of an epoxy nanocomposite with amine-functionalized graphenes“. Polymer Engineering & Science 54, Nr. 5 (22.11.2012): 985–91. http://dx.doi.org/10.1002/pen.23368.
Der volle Inhalt der QuelleSalgado-Delgado, Areli Marlen, Elizabeth Grissel González-Mondragón, Ricardo Hernández-Pérez, René Salgado-Delgado, José Alfonso Santana-Camilo und Alfredo Olarte-Paredes. „Obtention and Characterization of GO/Epoxy and GO-GPTMS/Epoxy Nanocompounds with Different Oxidation Degrees and Ultrasound Methods“. C 9, Nr. 1 (01.03.2023): 28. http://dx.doi.org/10.3390/c9010028.
Der volle Inhalt der QuelleBeckert, Fabian, Christian Friedrich, Ralf Thomann und Rolf Mülhaupt. „Sulfur-Functionalized Graphenes as Macro-Chain-Transfer and RAFT Agents for Producing Graphene Polymer Brushes and Polystyrene Nanocomposites“. Macromolecules 45, Nr. 17 (30.08.2012): 7083–90. http://dx.doi.org/10.1021/ma301379z.
Der volle Inhalt der QuelleChen, Y. R., K. F. Chiu, H. C. Lin, C. Y. Hsieh, C. B. Tsai und B. T. T. Chu. „The effect of dispersion status with functionalized graphenes for electric double-layer capacitors“. Materials Science and Engineering: B 190 (Dezember 2014): 59–65. http://dx.doi.org/10.1016/j.mseb.2014.09.011.
Der volle Inhalt der QuelleZhao, Li-fen, Qi Li, Ru-liang Zhang, Xiu-juan Tian und Lei Liu. „Effects of functionalized graphenes on the isothermal crystallization of poly(L-lactide) nanocomposites“. Chinese Journal of Polymer Science 34, Nr. 1 (13.11.2015): 111–21. http://dx.doi.org/10.1007/s10118-016-1732-5.
Der volle Inhalt der QuelleLi, Yaping, Zhijun Xu, Shuyan Liu, Jinwen Zhang und Xiaoning Yang. „Molecular simulation of reverse osmosis for heavy metal ions using functionalized nanoporous graphenes“. Computational Materials Science 139 (November 2017): 65–74. http://dx.doi.org/10.1016/j.commatsci.2017.07.032.
Der volle Inhalt der QuelleMarsoner Steinkasserer, Lukas Eugen, Alessandra Zarantonello und Beate Paulus. „Strong 1D localization and highly anisotropic electron–hole masses in heavy-halogen functionalized graphenes“. Physical Chemistry Chemical Physics 18, Nr. 36 (2016): 25629–36. http://dx.doi.org/10.1039/c6cp05188j.
Der volle Inhalt der QuellePop, Raluca, und Dušanka Janežič. „Interactions of Indomethacin with Functionalized Rhombellanes – a Molecular Docking Study“. Croatica chemica acta 92, Nr. 4 (2020): 503–9. http://dx.doi.org/10.5562/cca3591.
Der volle Inhalt der QuelleZhang, Zhongtao, und C. Heath Turner. „Redox Properties of Graphenes Functionalized with Cyclopentadiene–Transition Metal Complexes: A Potential Redox-Active Material“. Journal of Physical Chemistry C 118, Nr. 42 (10.10.2014): 24633–40. http://dx.doi.org/10.1021/jp508279n.
Der volle Inhalt der QuelleLuo, Tianlie, Jingwen Chen, Bo Song, Hua Ma, Zhiqiang Fu und Willie J. G. M. Peijnenburg. „Time-gated luminescence imaging of singlet oxygen photoinduced by fluoroquinolones and functionalized graphenes in Daphnia magna“. Aquatic Toxicology 191 (Oktober 2017): 105–12. http://dx.doi.org/10.1016/j.aquatox.2017.07.016.
Der volle Inhalt der QuelleBaik, Ku Youn, Jinsung Choi, Hyeseon Gwon, Jaewon Cho, Yun Ki Kim, Pankaj Attri, Un Jeong Kim und Ranju Jung. „Adhesion and differentiation of human mesenchymal stem cells on plasma-functionalized graphenes with different feeding gases“. Carbon 77 (Oktober 2014): 302–10. http://dx.doi.org/10.1016/j.carbon.2014.05.033.
Der volle Inhalt der QuelleZarafu, Irina, Ioana Turcu, Daniela Culiță, Simona Petrescu, Marcela Popa, Mariana Chifiriuc, Carmen Limban, Alexandra Telehoiu und Petre Ioniță. „Antimicrobial Features of Organic Functionalized Graphene-Oxide with Selected Amines“. Materials 11, Nr. 9 (13.09.2018): 1704. http://dx.doi.org/10.3390/ma11091704.
Der volle Inhalt der QuelleLuo, Jheng-Hua, Zih-Siang Hong, Tzu-Hsuan Chao und Mu-Jeng Cheng. „Quantum Mechanical Screening of Metal-N4-Functionalized Graphenes for Electrochemical Anodic Oxidation of Light Alkanes to Oxygenates“. Journal of Physical Chemistry C 123, Nr. 31 (16.07.2019): 19033–44. http://dx.doi.org/10.1021/acs.jpcc.9b04803.
Der volle Inhalt der QuelleMuraru, Sebastian, Cosmin G. Samoila, Emil I. Slusanschi, Jorge S. Burns und Mariana Ionita. „Molecular Dynamics Simulations of DNA Adsorption on Graphene Oxide and Reduced Graphene Oxide-PEG-NH2 in the Presence of Mg2+ and Cl− ions“. Coatings 10, Nr. 3 (20.03.2020): 289. http://dx.doi.org/10.3390/coatings10030289.
Der volle Inhalt der QuelleZhang, Zhongtao, und C. Heath Turner. „Structural and Electronic Properties of Carbon Nanotubes and Graphenes Functionalized with Cyclopentadienyl–Transition Metal Complexes: A DFT Study“. Journal of Physical Chemistry C 117, Nr. 17 (17.04.2013): 8758–66. http://dx.doi.org/10.1021/jp312232t.
Der volle Inhalt der QuelleGuo, Xiaoyao, Qin Wei, Bin Du, Yakun Zhang, Xiaodong Xin, Liangguo Yan und Haiqin Yu. „Removal of basic dyes (malachite green) from aqueous medium by adsorption onto amino functionalized graphenes in batch mode“. Desalination and Water Treatment 53, Nr. 3 (07.10.2013): 818–25. http://dx.doi.org/10.1080/19443994.2013.846239.
Der volle Inhalt der QuelleCheng, Mu-Jeng. „(Invited) Quantum Mechanical Screening of Metal-N4-Functionalized Graphenes for Electrochemical Anodic Oxidation of Light Alkanes to Oxygenates“. ECS Meeting Abstracts MA2020-01, Nr. 50 (01.05.2020): 2746. http://dx.doi.org/10.1149/ma2020-01502746mtgabs.
Der volle Inhalt der QuelleYadav, Santosh Kumar, Yong Chae Jung, Jin Hee Kim, Yong-Il Ko, Hee Jeong Ryu, Mukesh Kumar Yadav, Yoong Ahm Kim und Jae Whan Cho. „Biocomposites: Mechanically Robust, Electrically Conductive Biocomposite Films Using Antimicrobial Chitosan-Functionalized Graphenes (Part. Part. Syst. Charact. 8/2013)“. Particle & Particle Systems Characterization 30, Nr. 8 (August 2013): 648. http://dx.doi.org/10.1002/ppsc.201370031.
Der volle Inhalt der QuelleGuo, Xiaoyao, Qin Wei, Bin Du, Yakun Zhang, Xiaodong Xin, Liangguo Yan und Haiqin Yu. „Removal of Metanil Yellow from water environment by amino functionalized graphenes (NH2-G) – Influence of surface chemistry of NH2-G“. Applied Surface Science 284 (November 2013): 862–69. http://dx.doi.org/10.1016/j.apsusc.2013.08.023.
Der volle Inhalt der QuelleTian, Weiqian, Qiuming Gao, Yanli Tan, Yunlu Zhang, Jiandong Xu, Zeyu Li, Kai Yang, Lihua Zhu und Zhengping Liu. „Three-dimensional functionalized graphenes with systematical control over the interconnected pores and surface functional groups for high energy performance supercapacitors“. Carbon 85 (April 2015): 351–62. http://dx.doi.org/10.1016/j.carbon.2015.01.001.
Der volle Inhalt der QuelleArnold, Anne M., Brian D. Holt, Leila Daneshmandi, Cato T. Laurencin und Stefanie A. Sydlik. „Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration“. Proceedings of the National Academy of Sciences 116, Nr. 11 (22.02.2019): 4855–60. http://dx.doi.org/10.1073/pnas.1815434116.
Der volle Inhalt der QuelleAu, Heather, Noelia Rubio und Milo S. P. Shaffer. „Brominated graphene as a versatile precursor for multifunctional grafting“. Chemical Science 9, Nr. 1 (2018): 209–17. http://dx.doi.org/10.1039/c7sc03455e.
Der volle Inhalt der QuelleAbbas, S. S., und T. McNally. „Composites of Cysteamine Functionalised Graphene Oxide and Polypropylene“. International Polymer Processing 36, Nr. 3 (01.07.2021): 297–313. http://dx.doi.org/10.1515/ipp-2020-4079.
Der volle Inhalt der QuelleXie, Quanling, Shishen Zhang, Zhuan Hong, Hanjun Ma, Birong Zeng, Xiao Gong, Wenyao Shao und Qiuquan Wang. „A novel double-modified strategy to enhance the performance of thin-film nanocomposite nanofiltration membranes: Incorporating functionalized graphenes into supporting and selective layers“. Chemical Engineering Journal 368 (Juli 2019): 186–201. http://dx.doi.org/10.1016/j.cej.2019.02.180.
Der volle Inhalt der QuelleChen, Duoli, Chaoliang Gan, Xiaoqiang Fan, Lin Zhang, Wen Li, Minhao Zhu und Xin Quan. „Improving the Dynamic Mechanical Properties of XNBR Using ILs/KH550-Functionalized Multilayer Graphene“. Materials 12, Nr. 17 (30.08.2019): 2800. http://dx.doi.org/10.3390/ma12172800.
Der volle Inhalt der QuelleZhao, C. H., X. P. Zhang und L. Zhang. „RGD peptide functionalized graphene oxide: a bioactive surface for cell-material interactions“. Digest Journal of Nanomaterials and Biostructures 17, Nr. 3 (25.09.2022): 989–97. http://dx.doi.org/10.15251/djnb.2022.173.989.
Der volle Inhalt der QuelleMa, Baoguang, Cheng Chen, Xiaojun Xie, Yanhui Chen, Qiuyu Zhang, Dong Lv und Zhenguo Liu. „Aminobenzoic acid functionalized graphene oxide as environment-friendly corrosion inhibitors for Q235 steel in HCl solution: experimental and DFT studies“. Anti-Corrosion Methods and Materials 68, Nr. 3 (07.06.2021): 229–37. http://dx.doi.org/10.1108/acmm-03-2021-2449.
Der volle Inhalt der QuelleMo, Xiaoju, Yan Wei, Xuehui Zhang, Qing Cai, Yang Shen, Xiaohan Dai, Song Meng et al. „Enhanced Stem Cell Osteogenic Differentiation by Bioactive Glass Functionalized Graphene Oxide Substrates“. Journal of Nanomaterials 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/5613980.
Der volle Inhalt der Quelle