Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Functionalized Graphenes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Functionalized Graphenes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Functionalized Graphenes"
Tene, Talia, Stefano Bellucci, Marco Guevara, Fabian Arias Arias, Miguel Ángel Sáez Paguay, John Marcos Quispillo Moyota, Melvin Arias Polanco et al. „Adsorption of Mercury on Oxidized Graphenes“. Nanomaterials 12, Nr. 17 (31.08.2022): 3025. http://dx.doi.org/10.3390/nano12173025.
Der volle Inhalt der QuelleTene, Talia, Fabian Arias Arias, Marco Guevara, Juan Carlos González García, Melvin Arias Polanco, Andrea Scarcello, Lorenzo S. Caputi, Stefano Bellucci und Cristian Vacacela Gomez. „Adsorption Kinetics of Hg(II) on Eco-Friendly Prepared Oxidized Graphenes“. Coatings 12, Nr. 8 (10.08.2022): 1154. http://dx.doi.org/10.3390/coatings12081154.
Der volle Inhalt der QuelleXu, Hangxun, und Kenneth S. Suslick. „Sonochemical Preparation of Functionalized Graphenes“. Journal of the American Chemical Society 133, Nr. 24 (22.06.2011): 9148–51. http://dx.doi.org/10.1021/ja200883z.
Der volle Inhalt der QuelleMoon, Hyun Gon, und Jin Hae Chang. „Syntheses and Characterizations of Functionalized Graphenes and Reduced Graphene Oxide“. Polymer Korea 35, Nr. 3 (31.05.2011): 265–71. http://dx.doi.org/10.7317/pk.2011.35.3.265.
Der volle Inhalt der QuelleMojica-Sánchez, Juan Pablo, Víctor Manuel Langarica-Rivera, Kayim Pineda-Urbina, Jorge Nochebuena, Gururaj Kudur Jayaprakash und Zeferino Gómez Sandoval. „Adsorption of glyphosate on graphene and functionalized graphenes: A DFT study“. Computational and Theoretical Chemistry 1215 (September 2022): 113840. http://dx.doi.org/10.1016/j.comptc.2022.113840.
Der volle Inhalt der QuelleHu, Bo, Lingdi Liu, Yanxu Zhao und Changli Lü. „A facile construction of quaternized polymer brush-grafted graphene modified polysulfone based composite anion exchange membranes with enhanced performance“. RSC Advances 6, Nr. 56 (2016): 51057–67. http://dx.doi.org/10.1039/c6ra06363b.
Der volle Inhalt der QuelleHeo, Cheol, und Jin-Hae Chang. „Syntheses and Characterizations of Position Specific Functionalized Graphenes“. Polymer Korea 37, Nr. 2 (25.03.2013): 218–24. http://dx.doi.org/10.7317/pk.2013.37.2.218.
Der volle Inhalt der QuelleHuang, Wenyi, Xilian Ouyang und L. James Lee. „High-Performance Nanopapers Based on Benzenesulfonic Functionalized Graphenes“. ACS Nano 6, Nr. 11 (29.10.2012): 10178–85. http://dx.doi.org/10.1021/nn303917p.
Der volle Inhalt der QuelleLi, Yuanzhen, Liying Zhang und Chao Wu. „Uncertainty in the separation properties of functionalized porous graphenes“. Applied Surface Science 525 (September 2020): 146524. http://dx.doi.org/10.1016/j.apsusc.2020.146524.
Der volle Inhalt der QuelleTene, Talia, Stefano Bellucci, Marco Guevara, Edwin Viteri, Malvin Arias Polanco, Orlando Salguero, Eder Vera-Guzmán et al. „Cationic Pollutant Removal from Aqueous Solution Using Reduced Graphene Oxide“. Nanomaterials 12, Nr. 3 (18.01.2022): 309. http://dx.doi.org/10.3390/nano12030309.
Der volle Inhalt der QuelleDissertationen zum Thema "Functionalized Graphenes"
Bhattacharya, Suchandra. „New catalytic applications of functionalized graphenes and metal embedded organic polymer“. Thesis, University of North Bengal, 2020. http://ir.nbu.ac.in/handle/123456789/4363.
Der volle Inhalt der QuelleHaberer-Gehrmann, Danny. „Electronic Properties of Functionalized Graphene Studied With Photoemission Spectroscopy“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-97417.
Der volle Inhalt der QuelleBointon, Thomas H. „Graphene and functionalised graphene for flexible and optoelectric applications“. Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/17620.
Der volle Inhalt der QuelleSapkota, Indra Prasad. „Tunable band gap in functionalized epitaxial graphene“. DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2013. http://digitalcommons.auctr.edu/dissertations/709.
Der volle Inhalt der QuelleLin, Ziyin. „Functionalized graphene for energy storage and conversion“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51871.
Der volle Inhalt der QuellePlachinda, Pavel. „Electronic Properties and Structure of Functionalized Graphene“. PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/585.
Der volle Inhalt der QuelleHewa-Bosthanthirige, Mihiri Shashikala. „Structural and electronics properties of noncovalently functionalized graphene“. DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2013. http://digitalcommons.auctr.edu/dissertations/1286.
Der volle Inhalt der QuellePham, Van Dong. „STM characterization of functionalized carbon nanotubes and graphene“. Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC245.
Der volle Inhalt der QuelleIn this thesis we studied the interaction between organic molecules and carbon nanomaterials. Using scanning tunneling microscopy (STM) at low temperature and in ultra-high vacuum, we measured the properties of porphyrin molecules at the surface of graphene and single-walled carbon nanotubes. We first studied electron injection in graphene at defect sites (grain boundaries and nitrogen doping atoms). Using image-potential states, we evidenced the variation of local work function in doped graphene. Secondly, we investigated the properties of free-base porphyrin (H2TPP) molecules adsorbed on a Au(111) surface. We performed tip-induced tautomerization and dehydrogenation of the molecules, and revealed how these operations modify the molecular states and molecule-substrate interaction. Following these two preliminary studies, we studied the interaction of graphene with porphyrin molecules. We evidenced a weak electronic coupling between the molecules and graphene. We then showed how a nitrogen dopant on doped graphene can tune the molecule-surface interaction. The comparison between molecules adsorbed on nitrogen doping sites with those adsorbed on carbon sites clearly reveals a downshift of the energy of the molecular states at the doping sites. This downshift reveals a partial electron transfer from the nitrogen sites of graphene to the adsorbed molecules. In the last part of this thesis, we studied the properties of single-walled carbon nanotubes functionalized with a porphyrin polymer. The STM measurements revealed that the polymer is partially covering the nanotubes. Local spectroscopy indicated that the local density of states are modified at the polymer location
Arbuzov, A. A., V. E. Muradyan, B. P. Tarasov und E. A. Sokolov. „Preparation of Amino-Functionalized Graphene Sheets and their Conductive Properties“. Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35639.
Der volle Inhalt der QuelleJeon, Intak. „Synthesis of functionalized few layer graphene via electrochemical expansion“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101797.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 59-62).
Single layer graphene is a nearly transparent two-dimensional honeycomb sp2 hybridized carbon lattice, and has received immense attention for its potential application in next-generation electronic devices, composite materials, and energy storage devices. This attention is a result of its desirable and intriguing electrical, mechanical, and chemical properties. However, mass production of high-quality, solution-processable graphene via a simple low-cost method remains a major challenge. Recently, electrochemical exfoliation of graphite has attracted attention as an easy, fast, and environmentally friendly approach to the production of high-quality graphene. This route solution phase approach complements the original micromechanical cleavage production of high quality graphite samples and also involved a chemically activated intermediate state that facilitates functionalization. In this thesis we demonstrate a highly efficient electrochemical exfoliation of graphite in organic solvent containing tetraalkylammonium salts, avoiding oxidation of graphene and the associated defect generation encountered with the broadly used Hummer's method. The expansion and charging of the graphite by intercalation of cations facilitates the functionalization of the graphene basal surfaces. Electrochemically enhanced diazonium functionalization of the expanded graphite was performed. The exfoliated graphene platelets were analyzed by Raman spectroscopy, to quantify defect states and the degree of exfoliation. Additional microscopy techniques provided additional insight into the chemical state and structure of the graphene sheets.
by Intak Jeon.
S.M.
Bücher zum Thema "Functionalized Graphenes"
Polymer Functionalized Graphene. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781788019675.
Der volle Inhalt der QuelleNandi, Arun Kumar. Polymer Functionalized Graphene. Royal Society of Chemistry, The, 2021.
Den vollen Inhalt der Quelle findenNandi, Arun Kumar. Polymer Functionalized Graphene. Royal Society of Chemistry, The, 2021.
Den vollen Inhalt der Quelle findenNandi, Arun Kumar. Polymer Functionalized Graphene. Royal Society of Chemistry, The, 2021.
Den vollen Inhalt der Quelle findenFunctionalized Graphene Nanocomposites and their Derivatives. Elsevier, 2019. http://dx.doi.org/10.1016/c2017-0-00309-9.
Der volle Inhalt der QuelleJawaid, Mohammad, Abou el Kacem Qaiss und Rachid Bouhfid. Functionalized Graphene Nanocomposites and Their Derivatives: Synthesis, Processing and Applications. Elsevier, 2018.
Den vollen Inhalt der Quelle findenFunctionalized Graphene Nanocomposites and Their Derivatives: Synthesis, Processing and Applications. Elsevier, 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Functionalized Graphenes"
Azcarate, Iban, David Lachkar, Emmanuel Lacôte, Jennifer Lesage de la Haye und Anne-Laure Vallet. „Functionalized Graphenes“. In Chemistry of Organo-Hybrids, 36–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118870068.ch2.
Der volle Inhalt der QuelleYang, Minghui, Chunyan Wang, Qin Wei, Bin Du, He Li und Zhiyong Qian. „Functionalized Graphene for Biosensing Applications“. In Biosensor Nanomaterials, 221–35. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635160.ch11.
Der volle Inhalt der QuelleShanmugapriya, V., S. Arunpandiyan, G. Hariharan und A. Arivarasan. „Functionalized Graphene and its Derivatives for Industrial Energy Storage“. In Functionalized Nanomaterials Based Supercapacitor, 533–67. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3021-0_22.
Der volle Inhalt der QuelleKaraman, Merve, Eyyup Yalcin, Abdelkhalk Aboulouard und Mustafa Can. „Graphene Edge Structures: Folding, Tubing, and Twisting“. In Handbook of Functionalized Carbon Nanostructures, 1–39. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-14955-9_12-1.
Der volle Inhalt der QuelleSohal, Neeraj, Banibrata Maity und Soumen Basu. „Size-Dependent Properties of Graphene Quantum Dots“. In Handbook of Functionalized Carbon Nanostructures, 1–32. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-14955-9_3-1.
Der volle Inhalt der QuelleGadtya, Ankita Subhrasmita, Kalim Deshmukh und Srikanta Moharana. „Geometric and Electronic Properties of Graphene Nanoribbons“. In Handbook of Functionalized Carbon Nanostructures, 1–39. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-14955-9_7-1.
Der volle Inhalt der QuelleKiran, Ifrah, Naveed Akhtar Shad, M. Munir Sajid, Yasir Jamil, Yasir Javed, M. Irfan Hussain und Kanwal Akhtar. „Graphene Functionalized PLA Nanocomposites and Their Biomedical Applications“. In Graphene Based Biopolymer Nanocomposites, 83–105. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9180-8_5.
Der volle Inhalt der QuelleHenna, T. K., K. P. Nivitha, V. R. Raphey, Chinnu Sabu und K. Pramod. „Functionalized Graphene for Drug Delivery Applications“. In Carbon Nanostructures, 247–78. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9057-0_11.
Der volle Inhalt der QuelleFu, Li. „Cyclodextrin Functionalized Graphene and Its Applications“. In Carbon Nanostructures, 193–213. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9057-0_8.
Der volle Inhalt der QuelleMishra, Ranjana, und Ankit Manral. „Graphene Functionalized Starch Biopolymer Nanocomposites: Fabrication, Characterization, and Applications“. In Graphene Based Biopolymer Nanocomposites, 173–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9180-8_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Functionalized Graphenes"
Diouf, D., und R. Asmatulu. „Silanized Graphene-Based Nanocomposite Coatings on Fiber Reinforced Composites Against the Environmental Degradations“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39818.
Der volle Inhalt der QuelleTachikawa, Hiroto, Tetsuji Iyama und Hiroshi Kawabata. „Molecular design of functionalized fullerenes and graphenes: Density functional theory (DFT) study“. In 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528697.
Der volle Inhalt der QuelleIyama, Tetsuji, Hiroshi Kawabata, Takahiro Fukuzumi und Hiroto Tachikawa. „Electronic states of organic radical-functionalized graphenes and fullerenes: Density functional theory (DFT) study“. In 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528698.
Der volle Inhalt der QuelleDogadina, E., R. D. Rodriguez, M. Fatkullin, A. Lipovka, A. Kozelskaya, S. Tverdohlebov und E. Sheremet. „Implant Electronics with Functionalized Graphene“. In Четвертая российская конференция «ГРАФЕН: МОЛЕКУЛА И 2D-КРИСТАЛЛ». NIIC SB RAS, 2023. http://dx.doi.org/10.26902/graphene-23-035.
Der volle Inhalt der QuelleRigosi, Albert F., Mattias Kruskopf, Alireza R. Panna, Shamith U. Payagala, Dean G. Jarrett, David B. Newell und Randolph E. Elmquist. „Metrological Suitability of Functionalized Epitaxial Graphene“. In 2020 Conference on Precision Electromagnetic Measurements (CPEM 2020). IEEE, 2020. http://dx.doi.org/10.1109/cpem49742.2020.9191783.
Der volle Inhalt der QuelleMcLaughlin, Adam, und Byungki Kim. „Fabrication and Fracture Test of Functionalized Graphene-PETI 5 Composite“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38018.
Der volle Inhalt der QuelleLiang, Yupei, Ning An, Teng Tan, Fan Tang, Yunjiang Rao und Baicheng Yao. „Ultra-sensitive gas detection based on graphene microcomb“. In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.w4.60.
Der volle Inhalt der QuelleSomboon, Kantika, Nattakarn Hongsriphan und Pajaera Patanathabutr. „Influence of functionalized graphene and processing condition on electrical property of polyamide 11/functionalized graphene cast films“. In THE 7TH INTERNATIONAL CONFERENCE ON ENGINEERING, APPLIED SCIENCES AND TECHNOLOGY: (ICEAST2021). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0064068.
Der volle Inhalt der QuelleMAHMUD, HASHIM AL, ,. MATTHEW RADUE, WILLIAM PISANI und GREGORY ODEGARD. „COMPUTATIONAL MODELING OF EPOXY-BASED HYBRID COMPOSITES REINFORCED WITH CARBON FIBERS AND FUNCTIONALIZED GRAPHENE NANOPLATELETS“. In Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35846.
Der volle Inhalt der QuelleFranca, Jose Romão, Guilherme Max Dias Ferreira, Gabriel Max Dias Ferreira, Raphael Longuinhos und Jenaina Ribeiro-Soares. „Synthesis and optical characterization of graphene oxide-functionalized biochars for boron incorporation“. In Latin America Optics and Photonics Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.th1d.3.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Functionalized Graphenes"
Plachinda, Pavel. Electronic Properties and Structure of Functionalized Graphene. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.585.
Der volle Inhalt der Quelle