Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Functional verification of digital systems“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Functional verification of digital systems" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Functional verification of digital systems"
Franco, Ricardo Augusto Pereira, Karina Rocha Gomes Da Silva und Cássio Leonardo Rodrigues. „Genetic Algorithm applied to the Functional Verification in Digital Systems“. Journal of Integrated Circuits and Systems 13, Nr. 1 (24.08.2018): 1–9. http://dx.doi.org/10.29292/jics.v13i1.20.
Der volle Inhalt der QuelleAlekhin, V. A. „Designing Electronic Systems Using SystemC and SystemC–AMS“. Russian Technological Journal 8, Nr. 4 (06.08.2020): 79–95. http://dx.doi.org/10.32362/2500-316x-2020-8-4-79-95.
Der volle Inhalt der QuelleChen, Fu Long, Zhao Xia Zhu und Xiao Ya Fan. „FPGA-Based In-Circuit Verification of Digital Systems“. Advanced Materials Research 187 (Februar 2011): 362–67. http://dx.doi.org/10.4028/www.scientific.net/amr.187.362.
Der volle Inhalt der QuelleWang, Qian, Xiaoyu Song, Ming Gu und Jiaguang Sun. „Functional Verification of High Performance Adders in COQ“. Journal of Applied Mathematics 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/197252.
Der volle Inhalt der QuelleWei, Chi Pin, Zhao Lin Li, Hao Liu und Zhi Xiang Chen. „Design of a Random Test Platform for DSP Serials Used in Embedded Systems“. Advanced Materials Research 267 (Juni 2011): 98–103. http://dx.doi.org/10.4028/www.scientific.net/amr.267.98.
Der volle Inhalt der QuelleHuang, Hong Hsin, Chien Yuan Liu, Ming Chih Huang, I. Chun Ko und Jia Ming Lee. „Digital I/O Training Kit Development for Arduino Platforms“. Applied Mechanics and Materials 214 (November 2012): 649–53. http://dx.doi.org/10.4028/www.scientific.net/amm.214.649.
Der volle Inhalt der QuelleNovikov, Sergey V., und Andrey A. Sazonov. „Digital certification of aviation equipment on the basis of “Siemens PLM Software” technologies“. Econimics Journal 1, Nr. 1 (15.12.2019): 13–19. http://dx.doi.org/10.46502/issn.2711-2454/2019.1.02.
Der volle Inhalt der QuelleGao, Feng, Yun Wu und Shang Qiong Lu. „LabVIEW-Based Virtual Laboratory for Digital Signal Processing“. Advanced Materials Research 268-270 (Juli 2011): 2150–57. http://dx.doi.org/10.4028/www.scientific.net/amr.268-270.2150.
Der volle Inhalt der QuelleYan, Qun Min, und Juan Juan Zhu. „Design and Simulation Analysis of Aircraft Dynamic System“. Advanced Materials Research 314-316 (August 2011): 511–17. http://dx.doi.org/10.4028/www.scientific.net/amr.314-316.511.
Der volle Inhalt der QuelleSzuster, Marcin, und Bartłomiej Kozioł. „Hidden Security Breaches in Automatic Control of Technological Processes“. Pomiary Automatyka Robotyka 25, Nr. 2 (30.06.2021): 31–39. http://dx.doi.org/10.14313/par_240/31.
Der volle Inhalt der QuelleDissertationen zum Thema "Functional verification of digital systems"
Malkoc, Veysi. „Sequential alignment and position verification system for functional proton radiosurgery“. CSUSB ScholarWorks, 2004. https://scholarworks.lib.csusb.edu/etd-project/2535.
Der volle Inhalt der QuellePrado, Bruno Otávio Piedade. „IVM: uma metodologia de verificação funcional interoperável, iterativa e incremental“. reponame:Repositório Institucional da UFS, 2009. https://ri.ufs.br/handle/riufs/1672.
Der volle Inhalt der QuelleVavro, Tomáš. „Periferie procesoru RISC-V“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445553.
Der volle Inhalt der QuelleWang, Xuan. „Verification of digital controller implementations /“. Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1073.pdf.
Der volle Inhalt der QuelleSobel, Ann E. Kelley. „Modular verification of concurrent systems /“. The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487267546983528.
Der volle Inhalt der QuelleAntti, William. „Virtualized Functional Verification of Cross-Platform Software Applications“. Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74599.
Der volle Inhalt der QuelleAhmad, Manzoor. „Modeling and verification of functional and non functional requirements of ambient, self adaptative systems“. Phd thesis, Université Toulouse le Mirail - Toulouse II, 2013. http://tel.archives-ouvertes.fr/tel-00965934.
Der volle Inhalt der QuelleKarimibiuki, Mehdi. „Post-silicon code coverage for functional verification of systems-on-chip“. Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42967.
Der volle Inhalt der QuelleKriouile, Abderahman. „Formal methods for functional verification of cache-coherent systems-on-chip“. Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAM041/document.
Der volle Inhalt der QuelleState-of-the-art System-on-Chip (SoC) architectures integrate many different components, such as processors, accelerators, memories, and I/O blocks. Some of those components, but not all, may have caches. Because the effort of validation with simulation-based techniques, currently used in industry, grows exponentially with the complexity of the SoC, this thesis investigates the use of formal verification techniques in this context. More precisely, we use the CADP toolbox to develop and validate a generic formal model of a heterogeneous cache-coherent SoC compliant with the recent AMBA 4 ACE specification proposed by ARM. We use a constraint-oriented specification style to model the general requirements of the specification. We verify system properties on both the constrained and unconstrained model to detect the cache coherency corner cases. We take advantage of the parametrization of the proposed model to produce a comprehensive set of counterexamples of non-satisfied properties in the unconstrained model. The results of formal verification are then used to improve the industrial simulation-based verification techniques in two aspects. On the one hand, we suggest using the formal model to assess the sanity of an interface verification unit. On the other hand, in order to generate clever semi-directed test cases from temporal logic properties, we propose a two-step approach. One step consists in generating system-level abstract test cases using model-based testing tools of the CADP toolbox. The other step consists in refining those tests into interface-level concrete test cases that can be executed at RTL level with a commercial Coverage-Directed Test Generation tool. We found that our approach helps in the transition between interface-level and system-level verification, facilitates the validation of system-level properties, and enables early detection of bugs in both the SoC and the commercial test-bench
Li, Lun. „Integrated techniques for the formal verification and validation of digital systems“. Ann Arbor, Mich. : ProQuest, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3214772.
Der volle Inhalt der QuelleTitle from PDF title page (viewed July 10, 2007). Source: Dissertation Abstracts International, Volume: 67-04, Section: B, page: 2151. Adviser: Mitchell A. Thornton. Includes bibliographical references.
Bücher zum Thema "Functional verification of digital systems"
Schuring, J. Design and experimental verification of a calculation method for frequency response analysis of digital control systems in a continuous environment. Amsterdam: National Aerospace Laboratory, 1985.
Den vollen Inhalt der Quelle findenBening, Lionel. Principles of verifiable RTL design: A functional coding style supporting verification processes in Verilog. 2. Aufl. Boston: Kluwer Academic Publishers, 2001.
Den vollen Inhalt der Quelle findenBening, Lionel. Principles of verifiable RTL design: A functional coding style supporting verification processes in Verilog. 2. Aufl. Boston: Kluwer Academic Publishers, 2001.
Den vollen Inhalt der Quelle finden1956-, Foster Harry, Hrsg. Principles of verifiable RTL design: A functional coding style supporting verification processes in Verilog. Norwell, Mass: Kluwer Academic Publishers, 2000.
Den vollen Inhalt der Quelle findenInan, M. Kemal, und Robert P. Kurshan, Hrsg. Verification of Digital and Hybrid Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59615-5.
Der volle Inhalt der QuelleFormal specification and verification of digital systems. London: McGraw-Hill, 1994.
Den vollen Inhalt der Quelle findenGong, Lingkan, und Oliver Diessel. Functional Verification of Dynamically Reconfigurable FPGA-based Systems. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06838-1.
Der volle Inhalt der QuelleRushby, John. Formal methods and their role in digital systems validation for airborne systems. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Den vollen Inhalt der Quelle findenBronstein, Alexandre. String-functional semantics for formal verification of synchronous circuits. Stanford, Calif: Dept. of Computer Science, Stanford University, 1988.
Den vollen Inhalt der Quelle findenKong, Jeong-Taek. Digital Timing Macromodeling for VLSI Design Verification. Boston, MA: Springer US, 1995.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Functional verification of digital systems"
Nishida, Yuki, Hiromasa Saito, Ran Chen, Akira Kawata, Jun Furuse, Kohei Suenaga und Atsushi Igarashi. „Helmholtz: A Verifier for Tezos Smart Contracts Based on Refinement Types“. In Tools and Algorithms for the Construction and Analysis of Systems, 262–80. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72013-1_14.
Der volle Inhalt der QuelleGong, Lingkan, und Oliver Diessel. „Verification Challenges“. In Functional Verification of Dynamically Reconfigurable FPGA-based Systems, 15–40. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06838-1_2.
Der volle Inhalt der QuelleMcMillan, Kenneth. „Overview of Verification“. In Verification of Digital and Hybrid Systems, 3–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59615-5_1.
Der volle Inhalt der QuelleJanschek, Klaus, und Kristof Richmond. „Functional Realization: Digital Information Processing“. In Mechatronic Systems Design, 575–627. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17531-2_9.
Der volle Inhalt der QuelleMajumdar, Rupak, und Majid Zamani. „Approximately Bisimilar Symbolic Models for Digital Control Systems“. In Computer Aided Verification, 362–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31424-7_28.
Der volle Inhalt der QuelleSato, Ryosuke, und Naoki Kobayashi. „Modular Verification of Higher-Order Functional Programs“. In Programming Languages and Systems, 831–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54434-1_31.
Der volle Inhalt der QuelleGong, Lingkan, und Oliver Diessel. „Getting Started with Verification“. In Functional Verification of Dynamically Reconfigurable FPGA-based Systems, 65–86. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06838-1_4.
Der volle Inhalt der QuelleHuang, Qingdan, Liqiang Pei, Yuqing Chen, Rui Rao und Huiyuan Lv. „Digital Multimeter Automatic Verification Device Design“. In Advances in Intelligent Systems and Computing, 295–301. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3308-2_33.
Der volle Inhalt der QuelleMcMillan, Kenneth L. „Compositional Systems and Methods“. In Verification of Digital and Hybrid Systems, 138–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59615-5_7.
Der volle Inhalt der QuelleTemme, Gerald, Michael Scholz und Mohamed Mahmod. „Digital Map and Environment Generation“. In Validation and Verification of Automated Systems, 75–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14628-3_8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Functional verification of digital systems"
Cekan, Ondrej, Jakub Podivinsky und Zdenek Kotasek. „Software Fault Tolerance: The Evaluation by Functional Verification“. In 2015 Euromicro Conference on Digital System Design (DSD). IEEE, 2015. http://dx.doi.org/10.1109/dsd.2015.107.
Der volle Inhalt der QuelleThalaimalai Vanaraj, Anantharaj, Marshal Raj und Lakshminarayanan Gopalakrishnan. „Functional Verification closure using Optimal Test scenarios for Digital designs“. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). IEEE, 2020. http://dx.doi.org/10.1109/icssit48917.2020.9214097.
Der volle Inhalt der QuelleShedeed, Mohamed, Ghada Bahig, M. Watheq Elkharashi und Michael Chen. „Functional design and verification of automotive embedded software: An integrated system verification flow“. In 2013 18th International Conference on Digital Signal Processing (DSP). IEEE, 2013. http://dx.doi.org/10.1109/siecpc.2013.6550793.
Der volle Inhalt der QuellePuhar, Primoz, und Andrej Zemva. „Functional Verification of a USB Host Controller“. In 2008 11th EUROMICRO Conference on Digital System Design Architectures, Methods and Tools. IEEE, 2008. http://dx.doi.org/10.1109/dsd.2008.54.
Der volle Inhalt der QuelleRancea, I., und V. Sgarciu. „Functional verification of digital circuits using a software system“. In 2008 IEEE International Conference on Automation, Quality and Testing, Robotics. IEEE, 2008. http://dx.doi.org/10.1109/aqtr.2008.4588725.
Der volle Inhalt der QuelleSerrestou, Youssef, und Vincent Beroulle Chantal Robach. „Functional Verification of RTL Designs driven by Mutation Testing metrics“. In 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007). IEEE, 2007. http://dx.doi.org/10.1109/dsd.2007.4341472.
Der volle Inhalt der QuelleReza Kakoee, Mohammad, M. H. Neishaburi und Siamak Mohammadi. „Functional Test-Case Generation by a Control Transaction Graph for TLM Verification“. In 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007). IEEE, 2007. http://dx.doi.org/10.1109/dsd.2007.4341464.
Der volle Inhalt der QuelleDastidar, T. R., und P. Ray. „A new device level digital simulator for simulation and functional verification of large semiconductor memories“. In 19th International Conference on VLSI Design held jointly with 5th International Conference on Embedded Systems Design (VLSID'06). IEEE, 2006. http://dx.doi.org/10.1109/vlsid.2006.19.
Der volle Inhalt der QuelleHerencia-Zapana, Heber, James Lopez, Glen Gallagher, Baoluo Meng, Cameron Patterson und Lakshman Maalolan. „Formal Verification Tool Evaluation For Unmanned Aircraft Containing Complex Functions“. In 2020 IEEE/AIAA 39th Digital Avionics Systems Conference (DASC). IEEE, 2020. http://dx.doi.org/10.1109/dasc50938.2020.9256529.
Der volle Inhalt der QuelleChen, Ke, Leilei Xu und Zhende Zhou. „Co-Verification Method of NPP Protection System Based on FPGA Platform and SCADE Model“. In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66606.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Functional verification of digital systems"
Hu, Yalin. Exploring formal verification methodology for FPGA-based digital systems. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1055616.
Der volle Inhalt der QuelleKorsah, K., R. L. Clark und R. T. Wood. Functional issues and environmental qualification of digital protection systems of advanced light-water nuclear reactors. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10150860.
Der volle Inhalt der Quelle