Zeitschriftenartikel zum Thema „Fully- and weakly-Supervised learning“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Fully- and weakly-Supervised learning" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Cuypers, Suzanna, Maarten Bassier und Maarten Vergauwen. „Deep Learning on Construction Sites: A Case Study of Sparse Data Learning Techniques for Rebar Segmentation“. Sensors 21, Nr. 16 (11.08.2021): 5428. http://dx.doi.org/10.3390/s21165428.
Der volle Inhalt der QuelleWang, Ning, Jiajun Deng und Mingbo Jia. „Cycle-Consistency Learning for Captioning and Grounding“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 6 (24.03.2024): 5535–43. http://dx.doi.org/10.1609/aaai.v38i6.28363.
Der volle Inhalt der QuelleWang, Guangyao. „A Study of Object Detection Based on Weakly Supervised Learning“. International Journal of Computer Science and Information Technology 2, Nr. 1 (25.03.2024): 476–78. http://dx.doi.org/10.62051/ijcsit.v2n1.50.
Der volle Inhalt der QuelleAdke, Shrinidhi, Changying Li, Khaled M. Rasheed und Frederick W. Maier. „Supervised and Weakly Supervised Deep Learning for Segmentation and Counting of Cotton Bolls Using Proximal Imagery“. Sensors 22, Nr. 10 (12.05.2022): 3688. http://dx.doi.org/10.3390/s22103688.
Der volle Inhalt der QuelleNi, Ansong, Pengcheng Yin und Graham Neubig. „Merging Weak and Active Supervision for Semantic Parsing“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 05 (03.04.2020): 8536–43. http://dx.doi.org/10.1609/aaai.v34i05.6375.
Der volle Inhalt der QuelleColin, Aurélien, Ronan Fablet, Pierre Tandeo, Romain Husson, Charles Peureux, Nicolas Longépé und Alexis Mouche. „Semantic Segmentation of Metoceanic Processes Using SAR Observations and Deep Learning“. Remote Sensing 14, Nr. 4 (11.02.2022): 851. http://dx.doi.org/10.3390/rs14040851.
Der volle Inhalt der QuelleCai, Tingting, Hongping Yan, Kun Ding, Yan Zhang und Yueyue Zhou. „WSPolyp-SAM: Weakly Supervised and Self-Guided Fine-Tuning of SAM for Colonoscopy Polyp Segmentation“. Applied Sciences 14, Nr. 12 (08.06.2024): 5007. http://dx.doi.org/10.3390/app14125007.
Der volle Inhalt der QuelleHong, Yining, Qing Li, Daniel Ciao, Siyuan Huang und Song-Chun Zhu. „Learning by Fixing: Solving Math Word Problems with Weak Supervision“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 6 (18.05.2021): 4959–67. http://dx.doi.org/10.1609/aaai.v35i6.16629.
Der volle Inhalt der QuelleChen, Shaolong, und Zhiyong Zhang. „A Semi-Automatic Magnetic Resonance Imaging Annotation Algorithm Based on Semi-Weakly Supervised Learning“. Sensors 24, Nr. 12 (16.06.2024): 3893. http://dx.doi.org/10.3390/s24123893.
Der volle Inhalt der QuelleZhang, Yachao, Zonghao Li, Yuan Xie, Yanyun Qu, Cuihua Li und Tao Mei. „Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 4 (18.05.2021): 3421–29. http://dx.doi.org/10.1609/aaai.v35i4.16455.
Der volle Inhalt der QuelleQian, Xiaoliang, Chenyang Lin, Zhiwu Chen und Wei Wang. „SAM-Induced Pseudo Fully Supervised Learning for Weakly Supervised Object Detection in Remote Sensing Images“. Remote Sensing 16, Nr. 9 (26.04.2024): 1532. http://dx.doi.org/10.3390/rs16091532.
Der volle Inhalt der QuelleCherikbayeva, L. Ch, N. K. Mukazhanov, Z. Alibiyeva, S. A. Adilzhanova, G. A. Tyulepberdinova und M. Zh Sakypbekova. „SOLUTION TO THE PROBLEM WEAKLY CONTROLLED REGRESSION USING COASSOCIATION MATRIX AND REGULARIZATION“. Herald of the Kazakh-British technical university 21, Nr. 2 (01.07.2024): 83–94. http://dx.doi.org/10.55452/1998-6688-2024-21-2-83-94.
Der volle Inhalt der QuelleFeng, Jiahao, Ce Li und Jin Wang. „CAM-TMIL: A Weakly-Supervised Segmentation Framework for Histopathology based on CAMs and MIL“. Journal of Physics: Conference Series 2547, Nr. 1 (01.07.2023): 012014. http://dx.doi.org/10.1088/1742-6596/2547/1/012014.
Der volle Inhalt der QuelleChen, Jie, Fen He, Yi Zhang, Geng Sun und Min Deng. „SPMF-Net: Weakly Supervised Building Segmentation by Combining Superpixel Pooling and Multi-Scale Feature Fusion“. Remote Sensing 12, Nr. 6 (24.03.2020): 1049. http://dx.doi.org/10.3390/rs12061049.
Der volle Inhalt der QuelleWu, Zhenyu, Lin Wang, Wei Wang, Qing Xia, Chenglizhao Chen, Aimin Hao und Shuo Li. „Pixel Is All You Need: Adversarial Trajectory-Ensemble Active Learning for Salient Object Detection“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 3 (26.06.2023): 2883–91. http://dx.doi.org/10.1609/aaai.v37i3.25390.
Der volle Inhalt der QuelleLiu, Xiangquan, und Xiaoming Huang. „Weakly supervised salient object detection via bounding-box annotation and SAM model“. Electronic Research Archive 32, Nr. 3 (2024): 1624–45. http://dx.doi.org/10.3934/era.2024074.
Der volle Inhalt der QuelleBožič, Jakob, Domen Tabernik und Danijel Skočaj. „Mixed supervision for surface-defect detection: From weakly to fully supervised learning“. Computers in Industry 129 (August 2021): 103459. http://dx.doi.org/10.1016/j.compind.2021.103459.
Der volle Inhalt der QuelleGe, Yongtao, Qiang Zhou, Xinlong Wang, Chunhua Shen, Zhibin Wang und Hao Li. „Point-Teaching: Weakly Semi-supervised Object Detection with Point Annotations“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 1 (26.06.2023): 667–75. http://dx.doi.org/10.1609/aaai.v37i1.25143.
Der volle Inhalt der QuelleFu, Kun, Wanxuan Lu, Wenhui Diao, Menglong Yan, Hao Sun, Yi Zhang und Xian Sun. „WSF-NET: Weakly Supervised Feature-Fusion Network for Binary Segmentation in Remote Sensing Image“. Remote Sensing 10, Nr. 12 (06.12.2018): 1970. http://dx.doi.org/10.3390/rs10121970.
Der volle Inhalt der QuelleRoth, Holger R., Dong Yang, Ziyue Xu, Xiaosong Wang und Daguang Xu. „Going to Extremes: Weakly Supervised Medical Image Segmentation“. Machine Learning and Knowledge Extraction 3, Nr. 2 (02.06.2021): 507–24. http://dx.doi.org/10.3390/make3020026.
Der volle Inhalt der QuelleNartey, Obed Tettey, Guowu Yang, Sarpong Kwadwo Asare, Jinzhao Wu und Lady Nadia Frempong. „Robust Semi-Supervised Traffic Sign Recognition via Self-Training and Weakly-Supervised Learning“. Sensors 20, Nr. 9 (08.05.2020): 2684. http://dx.doi.org/10.3390/s20092684.
Der volle Inhalt der QuelleWatanabe, Takumi, Hiroki Takahashi, Yusuke Iwasawa, Yutaka Matsuo und Ikuko Eguchi Yairi. „Weakly Supervised Learning for Evaluating Road Surface Condition from Wheelchair Driving Data“. Information 11, Nr. 1 (19.12.2019): 2. http://dx.doi.org/10.3390/info11010002.
Der volle Inhalt der QuelleWang, Lukang, Min Zhang, Xu Gao und Wenzhong Shi. „Advances and Challenges in Deep Learning-Based Change Detection for Remote Sensing Images: A Review through Various Learning Paradigms“. Remote Sensing 16, Nr. 5 (25.02.2024): 804. http://dx.doi.org/10.3390/rs16050804.
Der volle Inhalt der QuelleBaek, Kyungjune, Minhyun Lee und Hyunjung Shim. „PsyNet: Self-Supervised Approach to Object Localization Using Point Symmetric Transformation“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 07 (03.04.2020): 10451–59. http://dx.doi.org/10.1609/aaai.v34i07.6615.
Der volle Inhalt der QuelleHoang, Nhat M., Kehong Gong, Chuan Guo und Michael Bi Mi. „MotionMix: Weakly-Supervised Diffusion for Controllable Motion Generation“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 3 (24.03.2024): 2157–65. http://dx.doi.org/10.1609/aaai.v38i3.27988.
Der volle Inhalt der QuelleQian, Rui, Yunchao Wei, Honghui Shi, Jiachen Li, Jiaying Liu und Thomas Huang. „Weakly Supervised Scene Parsing with Point-Based Distance Metric Learning“. Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 8843–50. http://dx.doi.org/10.1609/aaai.v33i01.33018843.
Der volle Inhalt der QuelleSebai, Meriem, Xinggang Wang und Tianjiang Wang. „MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images“. Medical & Biological Engineering & Computing 58, Nr. 7 (22.05.2020): 1603–23. http://dx.doi.org/10.1007/s11517-020-02175-z.
Der volle Inhalt der QuelleLin, Jianghang, Yunhang Shen, Bingquan Wang, Shaohui Lin, Ke Li und Liujuan Cao. „Weakly Supervised Open-Vocabulary Object Detection“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 4 (24.03.2024): 3404–12. http://dx.doi.org/10.1609/aaai.v38i4.28127.
Der volle Inhalt der QuelleKrishnamurthy, Jayant, und Thomas Kollar. „Jointly Learning to Parse and Perceive: Connecting Natural Language to the Physical World“. Transactions of the Association for Computational Linguistics 1 (Dezember 2013): 193–206. http://dx.doi.org/10.1162/tacl_a_00220.
Der volle Inhalt der QuelleZhang, Wei, Ping Tang, Thomas Corpetti und Lijun Zhao. „WTS: A Weakly towards Strongly Supervised Learning Framework for Remote Sensing Land Cover Classification Using Segmentation Models“. Remote Sensing 13, Nr. 3 (23.01.2021): 394. http://dx.doi.org/10.3390/rs13030394.
Der volle Inhalt der QuelleWang, Sherrie, William Chen, Sang Michael Xie, George Azzari und David B. Lobell. „Weakly Supervised Deep Learning for Segmentation of Remote Sensing Imagery“. Remote Sensing 12, Nr. 2 (07.01.2020): 207. http://dx.doi.org/10.3390/rs12020207.
Der volle Inhalt der QuelleXie, Fei, Panpan Zhang, Tao Jiang, Jiao She, Xuemin Shen, Pengfei Xu, Wei Zhao, Gang Gao und Ziyu Guan. „Lesion Segmentation Framework Based on Convolutional Neural Networks with Dual Attention Mechanism“. Electronics 10, Nr. 24 (13.12.2021): 3103. http://dx.doi.org/10.3390/electronics10243103.
Der volle Inhalt der QuelleWang, Yaodong, Lili Yue und Maoqing Li. „Cascaded Searching Reinforcement Learning Agent for Proposal-Free Weakly-Supervised Phrase Comprehension“. Electronics 13, Nr. 5 (27.02.2024): 898. http://dx.doi.org/10.3390/electronics13050898.
Der volle Inhalt der QuelleOuassit, Youssef, Reda Moulouki, Mohammed Yassine El Ghoumari, Mohamed Azzouazi und Soufiane Ardchir. „Liver Segmentation: A Weakly End-to-End Supervised Model“. International Journal of Online and Biomedical Engineering (iJOE) 16, Nr. 09 (13.08.2020): 77. http://dx.doi.org/10.3991/ijoe.v16i09.15159.
Der volle Inhalt der QuelleYan, Qing, Tao Sun, Jingjing Zhang und Lina Xun. „Visibility Estimation Based on Weakly Supervised Learning under Discrete Label Distribution“. Sensors 23, Nr. 23 (24.11.2023): 9390. http://dx.doi.org/10.3390/s23239390.
Der volle Inhalt der QuelleZhao, Lulu, Yanan Zhao, Ting Liu und Hanbing Deng. „A Weakly Supervised Semantic Segmentation Model of Maize Seedlings and Weed Images Based on Scrawl Labels“. Sensors 23, Nr. 24 (15.12.2023): 9846. http://dx.doi.org/10.3390/s23249846.
Der volle Inhalt der QuelleZhang, Shuyuan, Hongli Xu, Xiaoran Zhu und Lipeng Xie. „Automatic Crack Detection Using Weakly Supervised Semantic Segmentation Network and Mixed-Label Training Strategy“. Foundations of Computing and Decision Sciences 49, Nr. 1 (01.02.2024): 95–118. http://dx.doi.org/10.2478/fcds-2024-0007.
Der volle Inhalt der QuelleChen, Hao, Shuang Peng, Chun Du, Jun Li und Songbing Wu. „SW-GAN: Road Extraction from Remote Sensing Imagery Using Semi-Weakly Supervised Adversarial Learning“. Remote Sensing 14, Nr. 17 (23.08.2022): 4145. http://dx.doi.org/10.3390/rs14174145.
Der volle Inhalt der QuelleZheng, Shida, Chenshu Chen, Xi Yang und Wenming Tan. „MaskBooster: End-to-End Self-Training for Sparsely Supervised Instance Segmentation“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 3 (26.06.2023): 3696–704. http://dx.doi.org/10.1609/aaai.v37i3.25481.
Der volle Inhalt der QuelleQiang, Zhuang, Jingmin Shi und Fanhuai Shi. „Phenotype Tracking of Leafy Greens Based on Weakly Supervised Instance Segmentation and Data Association“. Agronomy 12, Nr. 7 (29.06.2022): 1567. http://dx.doi.org/10.3390/agronomy12071567.
Der volle Inhalt der QuelleLiu, Yiqing, Qiming He, Hufei Duan, Huijuan Shi, Anjia Han und Yonghong He. „Using Sparse Patch Annotation for Tumor Segmentation in Histopathological Images“. Sensors 22, Nr. 16 (13.08.2022): 6053. http://dx.doi.org/10.3390/s22166053.
Der volle Inhalt der QuelleMo, Shaoyi, Yufeng Shi, Qi Yuan und Mingyue Li. „A Survey of Deep Learning Road Extraction Algorithms Using High-Resolution Remote Sensing Images“. Sensors 24, Nr. 5 (06.03.2024): 1708. http://dx.doi.org/10.3390/s24051708.
Der volle Inhalt der QuelleFan, Yifei. „Image semantic segmentation using deep learning technique“. Applied and Computational Engineering 4, Nr. 1 (14.06.2023): 810–17. http://dx.doi.org/10.54254/2755-2721/4/2023439.
Der volle Inhalt der QuelleKuutti, Sampo, Richard Bowden und Saber Fallah. „Weakly Supervised Reinforcement Learning for Autonomous Highway Driving via Virtual Safety Cages“. Sensors 21, Nr. 6 (13.03.2021): 2032. http://dx.doi.org/10.3390/s21062032.
Der volle Inhalt der QuelleWang, Zhuhui, Shijie Wang, Haojie Li, Zhi Dou und Jianjun Li. „Graph-Propagation Based Correlation Learning for Weakly Supervised Fine-Grained Image Classification“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 07 (03.04.2020): 12289–96. http://dx.doi.org/10.1609/aaai.v34i07.6912.
Der volle Inhalt der QuelleCheng, Jianpeng, Siva Reddy, Vijay Saraswat und Mirella Lapata. „Learning an Executable Neural Semantic Parser“. Computational Linguistics 45, Nr. 1 (März 2019): 59–94. http://dx.doi.org/10.1162/coli_a_00342.
Der volle Inhalt der QuelleSali, Rasoul, Nazanin Moradinasab, Shan Guleria, Lubaina Ehsan, Philip Fernandes, Tilak U. Shah, Sana Syed und Donald E. Brown. „Deep Learning for Whole-Slide Tissue Histopathology Classification: A Comparative Study in the Identification of Dysplastic and Non-Dysplastic Barrett’s Esophagus“. Journal of Personalized Medicine 10, Nr. 4 (23.09.2020): 141. http://dx.doi.org/10.3390/jpm10040141.
Der volle Inhalt der QuelleWolf, Daniel, Sebastian Regnery, Rafal Tarnawski, Barbara Bobek-Billewicz, Joanna Polańska und Michael Götz. „Weakly Supervised Learning with Positive and Unlabeled Data for Automatic Brain Tumor Segmentation“. Applied Sciences 12, Nr. 21 (24.10.2022): 10763. http://dx.doi.org/10.3390/app122110763.
Der volle Inhalt der QuelleWolf, Daniel, Sebastian Regnery, Rafal Tarnawski, Barbara Bobek-Billewicz, Joanna Polańska und Michael Götz. „Weakly Supervised Learning with Positive and Unlabeled Data for Automatic Brain Tumor Segmentation“. Applied Sciences 12, Nr. 21 (24.10.2022): 10763. http://dx.doi.org/10.3390/app122110763.
Der volle Inhalt der QuelleWolf, Daniel, Sebastian Regnery, Rafal Tarnawski, Barbara Bobek-Billewicz, Joanna Polańska und Michael Götz. „Weakly Supervised Learning with Positive and Unlabeled Data for Automatic Brain Tumor Segmentation“. Applied Sciences 12, Nr. 21 (24.10.2022): 10763. http://dx.doi.org/10.3390/app122110763.
Der volle Inhalt der Quelle