Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Full scale field test“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Full scale field test" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Full scale field test"
Fleming, Paul, Jennifer Annoni, Andrew Scholbrock, Eliot Quon, Scott Dana, Scott Schreck, Steffen Raach, Florian Haizmann und David Schlipf. „Full-Scale Field Test of Wake Steering“. Journal of Physics: Conference Series 854 (Mai 2017): 012013. http://dx.doi.org/10.1088/1742-6596/854/1/012013.
Der volle Inhalt der QuellePan, Tso‐Chien, Siu Tee Wong, Hee Kiat Cheong und Kok Wai Phang. „Field Load Test on Full‐Scale Reinforced Concrete Frame“. Journal of Performance of Constructed Facilities 6, Nr. 3 (August 1992): 137–50. http://dx.doi.org/10.1061/(asce)0887-3828(1992)6:3(137).
Der volle Inhalt der QuelleBybee, Karen. „Field Test of a Full-Scale Dual-Gradient Drilling System“. Journal of Petroleum Technology 53, Nr. 11 (01.11.2001): 34. http://dx.doi.org/10.2118/1101-0034-jpt.
Der volle Inhalt der QuelleDou, WY. „Field test and numerical analysis of a new expansion joint“. Journal of Physics: Conference Series 2158, Nr. 1 (01.01.2022): 012041. http://dx.doi.org/10.1088/1742-6596/2158/1/012041.
Der volle Inhalt der QuelleBuckley-Johnstone, L., M. Harmon, R. Lewis, C. Hardwick und R. Stock. „A comparison of friction modifier performance using two laboratory test scales“. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 233, Nr. 2 (04.09.2018): 201–10. http://dx.doi.org/10.1177/0954409718787045.
Der volle Inhalt der QuelleKesavan, G., und S. S. Chandrasekaran. „Geotechnical Investigation, Field Load Test and Analysis of Full-Scale Bored Pile“. Applied Mechanics and Materials 813-814 (November 2015): 1126–30. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.1126.
Der volle Inhalt der QuelleNAGATANI, Tatsuya, Yukihiko TAMURA, Masatoshi IIJIMA, Masaru TATEYAMA, Kenichi KOJIMA und Kenji WATANABE. „CONSTRUCTION AND FIELD OBSERVATION OF THE FULL SCALE TEST INTEGRAL GRS BRIDGE“. Jioshinsetikkusu Rombunshu (Geosynthetics Engineering Journal) 24 (2009): 219–26. http://dx.doi.org/10.5030/jcigsjournal.24.219.
Der volle Inhalt der QuelleNishimoto, K., F. Kaster, I. Q. Masetti, J. Matsuura und J. A. P. Aranha. „Full scale decay test of a tanker: field data and theoretical analysis“. Ocean Engineering 26, Nr. 2 (August 1998): 125–45. http://dx.doi.org/10.1016/s0029-8018(97)10006-3.
Der volle Inhalt der QuelleByrne, P. M., H. Puebla, D. H. Chan, A. Soroush, N. R. Morgenstern, D. C. Cathro, W. H. Gu et al. „CANLEX full-scale experiment and modelling“. Canadian Geotechnical Journal 37, Nr. 3 (01.06.2000): 543–62. http://dx.doi.org/10.1139/t00-042.
Der volle Inhalt der QuelleGomez Gonzalez, Alejandro, Peder B. Enevoldsen, Athanasios Barlas und Helge A. Madsen. „Field test of an active flap system on a full-scale wind turbine“. Wind Energy Science 6, Nr. 1 (06.01.2021): 33–43. http://dx.doi.org/10.5194/wes-6-33-2021.
Der volle Inhalt der QuelleDissertationen zum Thema "Full scale field test"
Conlee, Carolyn T. Gallagher Patricia M. „Dynamic properties of colloidal silica soils using centrifuge model tests and a full-scale field test /“. Philadelphia, Pa. : Drexel University, 2010. http://hdl.handle.net/1860/3248.
Der volle Inhalt der QuelleRoia, Davide. „Dynamic response of piles under lateral loading: full scale field test and numerical analysis“. Doctoral thesis, Università Politecnica delle Marche, 2011. http://hdl.handle.net/11566/241933.
Der volle Inhalt der QuelleThe topic of soil-structure interaction has received large attention in recent years. The seismic performance of a superstructure can be significantly affected by the behaviour of soil and foundation and their mutual interaction under an earthquake motion. This problem is particularly significant in the case of deep foundations; mechanical properties and geometrical characteristics of soil and piles as well as their mutual interaction may affect the stiffness and damping characteristics of the soil-pile system during earthquake motion.In both research and advanced practice, this problem may be approached with a direct method, modelling the whole dynamic soil-pile system with a 3-D finite element model, or by using theoretical approaches. However, the results of these approaches are very sensitive to the degree of the model refinement and to many parameters that define the dynamic characteristics of the soil-pile system. In this context, experimental results of full- or smallscale in situ and laboratory tests represent an essential instrument to provide parameters for and to validate numerical and analytical methods. However, few full-scale in-situ tests on pile foundations have been reported in the open literature to date. The present work presents an extensive experimental program of full-scale field tests carried out on a group of three steel pipe piles at the tourist port of La Spezia, Italy. Three typologies of dynamic tests are carried out at different level of force: impact load test, free vibration test, and forced vibration test. The piles are vibro-driven into marine soft clay, with a L-shaped plan layout, kept free at the head. Two test campaigns have been carried out, the first 1 week and the second 10 weeks after vibro-driving of the piles. The piles are instrumented with an unconventional technique for field tests in marine environment which includes accelerometers at the head of each pile, strain gages and pore pressure gages along the fully instrumented corner pile. The dynamic behaviour of the complex soil-water-pile system at different levels of force is discussed. In particular the response of the single pile, in terms of natural frequencies, damping and mode shapes of the first and second pile bending modes is presented. Effects of the input direction in the pile-to-pile interaction are also evaluated. The variation in time of the dynamic behaviour of the system (for the two campaigns), due to re-consolidation of the soil close to the pile subsequent to the vibrodriving, is observed. An average shear wave velocity of the upper soil is estimated from the time delays of the accelerometer signals recorded at the head of piles. The experimental results are then compared with numerical results obtained with different approaches: two 3-D finite element models are developed in ABAQUS, considering solid or shell elements for the piles, and calibrated on the basis of experimental results; and a 3-D model for the kinematic interaction analysis of pile groups, formulated by Dezi et al. (2009) is here specialized to simulate the tests of the experimental campaign.
Delaney, Michael A. „Numerical field model simulation of full scale fire tests in a closed and an open compartment“. Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23994.
Der volle Inhalt der QuelleThorbjörnson, Lind Thomas. „Rockfalls from rock cuts beside Swedish railroads : A full scale fieldtest, to investigate rockfalls and how rock bounces“. Thesis, KTH, Jord- och bergmekanik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-185583.
Der volle Inhalt der QuelleStenras är ett stort problem runtom i världen, om de inträffar i bebyggda områden kan de leda till stora skador på infrastruktur, skador eller dödsfall. Av den anledningen är det viktigt att kunna förutse vart det finns risk för stenras och hur man kan förebygga dem och skydda bebyggda områden från dem. Dock är det ingen lätt uppgift att förutse stenras. Även om det finns ett potentiellt område för stenras kan det tyckas lätt att placera ut skyddsnät eller bulta fast potentiella block. Men i många fall är detta inte praktiskt, eller ekonomiskt, till exempel i bergsskärningar på äldre järnvägar i Sverige. Fallhöjderna här är inte speciellt höga men risken för skador på tåg och infrastruktur i spårområdet är hög, dock är det okänt hur omfattande skadorna kan bli. Trafikverket, den svenska myndigheten som ansvarar för Sveriges vägar och järnvägar, har under flera år utrett en ny metod för att klassificera och minimera riskerna för stenras från bergskärningar bredvid järnvägar. Denna utredning syftar bland annat till att till att väga in det potentiella maximalt avstånd ett block från stenras kan färdas i den befintliga modellen. Det här mastersarbetet är en del i den utredningen och kommer att innefatta ett fullskaligt fältförsök där stenras undersöks genom att de filmas och sedan utvärderas studskoefficienten, coefficient of restitution, från de enskilda rasen i stereo. Under fältstudien kommer en geoteknisk testutrustning, DCP test rigg, att utvärderas för sin förmåga att lätt i fält få fram ett uppskattat värde på studskoefficienten. Under utvärderingen kommer två stenrassimuleringsprogram att användas för att undersöka hur väl de stämmer med de verkliga blockens rörelser.
McCarthy, Timothy G. „Numerical field model simulation of full-scale fire tests in a closed spherical/cylindrical vessel using advanced computer graphics techniques“. Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/26656.
Der volle Inhalt der QuelleCamargo, Felipe Filizzola. „Field and laboratory performance evaluation of a field-blended rubber asphalt“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3138/tde-01072016-111905/.
Der volle Inhalt der QuelleNo Brasil, o asfalto-borracha vem sendo utilizado desde meados de 2001. Dentre os processos de fabricação do asfalto-borracha, o mais utilizado no Brasil é o asfalto-borracha estocável ou terminal blend. Contudo, o asfalto-borracha do tipo não estocável (field blend) vem sendo bastante difundido nos Estados Unidos há décadas, principalmente no estado do Arizona. Este processo resulta em um asfalto-borracha de alta viscosidade, com alto desempenho, porém requer um equipamento de fabricação de asfalto-borracha específico, instalado no canteiro de obras, ou muito próximo à usina de asfaltos fornecedora da obra. Tendo em vista as possíveis vantagens tecnológicas do asfalto-borracha field blend e o conhecimento ainda pequeno sobre esta técnica no Brasil, há a necessidade de desenvolver estudos para a avaliação deste tipo de material frente às condições climáticas e de solicitação pelas cargas viárias em nosso país. Para tanto, foi realizado um estudo em laboratório para verificar as propriedades reológicas de um asfalto-borracha field blend e compará-las com as características de ligantes típicos empregados no Brasil (um CAP 30-45 e um ligante modificado por polímero elastomérico do tipo SBS). Elegeu-se o Multiple Stress Creep and Recovery (MSCR) para verificar a deformação permanente e o Time Sweep e Linear Amplitude Sweep (LAS) para verificar o comportamento na fadiga dos ligantes. Na sequência, determinou-se a deformação permanente e o comportamento à fadiga de uma mistura asfáltica descontínua (gap-graded) empregando o asfalto-borracha field blend em laboratório e no campo. A deformação permanente da mistura foi verificada por meio do simulador de tráfego LCPC, enquanto a vida de fadiga foi determinada utilizando o ensaio de flexão em viga (4 pontos). Por fim, foi construída uma seção teste após a conclusão da obra de restauração dos pavimentos da rodovia RJ-122, local onde se elegeu a utilização desta tecnologia pela primeira vez no país. O desempenho da mistura foi estudado in loco com o emprego de ensaios acelerados do pavimento utilizando-se o simulador de tráfego linear móvel em tamanho real. Os resultados obtidos foram utilizados para modelar o desempenho da estrutura com o revestimento asfáltico constituído pela mistura com o asfalto-borracha por meio dos modelos de trincamento e de deformação permanente do Highway Development and Management Model (HDM-4), podendo-se verificar o desempenho desta mistura calibrado para as condições locais. Os ensaios acelerados foram validados em campo por meio de campanhas de monitoramento periódicas realizadas ao longo de quatro anos na rodovia RJ-122. Pelos ensaios de laboratório no ligante e na mistura foi possível concluir que o asfalto-borracha field blend apresenta um bom desempenho quanto à deformação permanente e à fadiga, corroborando o que foi verificado no campo.
Freuler, Richard Jeffrey. „An investigation of jet engine test cell aerodynamics by means of scale model test studies with comparisons to full-scale test results /“. The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487758680159803.
Der volle Inhalt der QuelleCarrea, Francesco. „Shake-table test on a full-scale bridge reinforced concrete column“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amslaurea.unibo.it/1756/.
Der volle Inhalt der QuelleGustafsson, Veronica. „Creep deformation of rockfill : Back analysis of a full scale test“. Thesis, KTH, Jord- och bergmekanik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-159189.
Der volle Inhalt der QuelleEdin, Erik, und Mattias Ström. „Comparing a full scale test with FDS, FireFOAM, McCaffrey & Eurocode“. Thesis, Luleå tekniska universitet, Byggkonstruktion och brand, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-75616.
Der volle Inhalt der QuelleBücher zum Thema "Full scale field test"
Zhou, Jialin, und Erwin Oh. Full-Scale Field Tests of Different Types of Piles. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6183-6.
Der volle Inhalt der QuelleDelaney, Michael A. Numerical field model simulation of full scale fire tests in a closed and an open compartment. Monterey, Calif: Naval Postgraduate School, 1992.
Den vollen Inhalt der Quelle findenMcCarthy, Timothy G. Numerical field model simulation of full-scale fire tests in a closed spherical/cylindrical vessel using advanced computer graphics techniques. Monterey, Calif: Naval Postgraduate School, 1991.
Den vollen Inhalt der Quelle findenKramer, Steven L. Behavior of piles in full-scale, field lateral loading tests: Final report, Research Project GC 8286, Task 4, Piles--Lateral Load Testing. [Olympia, Wash.?]: Washington State Dept. of Transportation, Planning, Research and Public Transportation Division in cooperation with the U.S. Dept. of Transportation, Federal Highway Administration, 1991.
Den vollen Inhalt der Quelle findenOrganisation for Economic Co-Operation and Development., Hrsg. OECD full-scale pavement test. Paris, France: Organisation for Economic Co-Operation and Development, 1991.
Den vollen Inhalt der Quelle findenYutaka, Yamazaki, und Kensetsushō Kenchiku Kenkyūjo (Japan), Hrsg. The Japanese 5-story full scale reinforced concrete masonry test. Tsukuba-shi, Japan: Building Research Institute, Ministry of Construction, 1989.
Den vollen Inhalt der Quelle finden1938-, Santhanam Chakra J., und Air and Energy Engineering Research Laboratory., Hrsg. Full-scale field evaluation of waste disposal from coal-fired electric generating plants. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1985.
Den vollen Inhalt der Quelle finden1938-, Santhanam Chakra J., und Air and Energy Engineering Research Laboratory, Hrsg. Full-scale field evaluation of waste disposal from coal-fired electric generating plants. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1985.
Den vollen Inhalt der Quelle finden1938-, Santhanam Chakra J., und Air and Energy Engineering Research Laboratory., Hrsg. Full-scale field evaluation of waste disposal from coal-fired electric generating plants. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1985.
Den vollen Inhalt der Quelle findenJ, Santhanam C., Hrsg. Full-scale field evaluation of waste disposal from coal-fired electric generating plants. S.l: s.n, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Full scale field test"
Clerici, Alberto, Ezio Giuriani, Danilo Cambiaghi, Antonio Isceri, Giorgio Vassena, Egidio Marchina und Luca Cominoli. „Rockfall Full Scale Field Tests“. In Landslide Science and Practice, 461–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31445-2_60.
Der volle Inhalt der QuelleZhou, Jialin, und Erwin Oh. „Field Tests of Precast Concrete Piles“. In Full-Scale Field Tests of Different Types of Piles, 107–38. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6183-6_4.
Der volle Inhalt der QuelleZhou, Jialin, und Erwin Oh. „Field Performance of Composite Piles“. In Full-Scale Field Tests of Different Types of Piles, 139–71. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6183-6_5.
Der volle Inhalt der QuelleZhou, Jialin, und Erwin Oh. „Field Tests of Post Grouted Concrete Piles“. In Full-Scale Field Tests of Different Types of Piles, 81–106. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6183-6_3.
Der volle Inhalt der QuelleZhou, Jialin, und Erwin Oh. „Field Tests of Super-Long and Large Diameter Piles“. In Full-Scale Field Tests of Different Types of Piles, 173–95. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6183-6_6.
Der volle Inhalt der QuelleZhou, Jialin, und Erwin Oh. „Piles Under Ultimate Loads“. In Full-Scale Field Tests of Different Types of Piles, 197–223. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6183-6_7.
Der volle Inhalt der QuelleZhou, Jialin, und Erwin Oh. „General Principles and Practices“. In Full-Scale Field Tests of Different Types of Piles, 5–79. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6183-6_2.
Der volle Inhalt der QuelleZhou, Jialin, und Erwin Oh. „Conclusions and Recommendations“. In Full-Scale Field Tests of Different Types of Piles, 267–72. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6183-6_9.
Der volle Inhalt der QuelleZhou, Jialin, und Erwin Oh. „Capacity and Settlement Analysis“. In Full-Scale Field Tests of Different Types of Piles, 225–65. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6183-6_8.
Der volle Inhalt der QuelleZhou, Jialin, und Erwin Oh. „Introduction“. In Full-Scale Field Tests of Different Types of Piles, 1–4. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6183-6_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Full scale field test"
Cappelletto, Andrea, Roberto Tagliaferri, Gianmario Giurlani, Giuseppe Andrei, Giuseppe Furlani und Giuseppe Scarpelli. „Field Full Scale Tests on Longitudinal Pipeline-Soil Interaction“. In 1998 2nd International Pipeline Conference. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/ipc1998-2090.
Der volle Inhalt der QuelleGRAVES, WILLIAM, und DAVID LATTANZI. „FULL-SCALE DEFORMATION FIELD MEASUREMENTS VIA PHOTOGRAMMETRIC REMOTE SENSING“. In Structural Health Monitoring 2021. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/shm2021/36298.
Der volle Inhalt der QuelleConstantinides, Yiannis, Stergios Liapis, Don Spencer, Mohammed Islam, Kjetil Skaugset, Apurva Batra und Rolf Baarholm. „Full Scale Fairing Qualification Tests“. In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-42417.
Der volle Inhalt der QuelleGoyder, H. G. D., K. Armstrong, L. Billingham, M. J. Every, T. P. Jee und R. J. Swindell. „A Full Scale Test for Acoustic Fatigue in Pipework“. In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93777.
Der volle Inhalt der QuelleCASTEDO, RICARDO, ANASTASIO P. SANTOS, CARLOS REIFARTH, MARÍA CHIQUITO, LINA MARIA LÓPEZ, ALEJANDRO PÉREZ-CALDENTEY, SANTIAGO MARTÍNEZ-ALMAJANO und ALEJANDRO ALAÑÓN. „FULL-SCALE REINFORCED CONCRETE SLABS WITH EXTERNAL REINFORCED POLYMER: FIELD TEST AND NUMERICAL COMPARISON“. In HPSM/OPTI/SUSI 2022. Southampton UK: WIT Press, 2022. http://dx.doi.org/10.2495/hpsu220121.
Der volle Inhalt der QuelleCai, Yezhao, Robert Pitt, Judy Bruenjes und Robert Andoh. „Full-Scale Up-Flo® Stormwater Filter Field Verification Tests“. In World Environmental and Water Resources Congress 2013. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784412947.292.
Der volle Inhalt der QuelleMoura, E. I. F., L. R. Rosa, J. O. Moraes, A. F. Riente, J. G. Percy und S. D. Franco. „Casing Wear Evaluation from Small-Scale Test“. In Offshore Technology Conference Brasil. OTC, 2023. http://dx.doi.org/10.4043/32862-ms.
Der volle Inhalt der QuelleLewicki, David G., Harry J. Decker und John T. Shimski. „Full-Scale Transmission Testing to Evaluate Advanced Lubricants“. In ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0036.
Der volle Inhalt der QuelleTaylor, Rocky, Ian Turnbull, Eleanor Bailey-Dudley und Rob Pritchett. „Full-Scale In-Situ Four-Point Beam Bending Field Tests on Sea Ice“. In ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/omae2021-63163.
Der volle Inhalt der QuellePanyam, Meghashyam, Amin Bibo und Samuel Roach. „On the Multi-Body Modeling and Validation of a Full Scale Wind Turbine Nacelle Test Bench“. In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9100.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Full scale field test"
Tiku, Sanjay, Binoy John und Arnav Rana. PR-214-183816-R01 Full-scale Fatigue Testing of Field Dents. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 2022. http://dx.doi.org/10.55274/r0012202.
Der volle Inhalt der QuellePargeter. L51507 Field Weldability of High-Strength Pipeline Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Oktober 1986. http://dx.doi.org/10.55274/r0010535.
Der volle Inhalt der QuelleLooney, B. B., T. C. Hazen, D. S. Kaback und C. A. Eddy. Full scale field test of the in situ air stripping process at the Savannah River integrated demonstration test site. Office of Scientific and Technical Information (OSTI), Juni 1991. http://dx.doi.org/10.2172/5624666.
Der volle Inhalt der QuelleLooney, B. B., T. C. Hazen, D. S. Kaback und C. A. Eddy. Full scale field test of the in situ air stripping process at the Savannah River integrated demonstration test site. Office of Scientific and Technical Information (OSTI), Juni 1991. http://dx.doi.org/10.2172/10129727.
Der volle Inhalt der QuellePargeter. L51579 Field Weldability of High Strength Pipeline Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 1988. http://dx.doi.org/10.55274/r0010292.
Der volle Inhalt der QuelleGary Blythe und MariJon Owens. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results. Office of Scientific and Technical Information (OSTI), Dezember 2007. http://dx.doi.org/10.2172/961516.
Der volle Inhalt der QuelleGary Blythe. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results. Office of Scientific and Technical Information (OSTI), Mai 2007. http://dx.doi.org/10.2172/961517.
Der volle Inhalt der QuelleFeng, Zhicao. PR-218-174512-R01 Full-Scale Surface Loading Testing of Buried Pipes. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juni 2021. http://dx.doi.org/10.55274/r0012107.
Der volle Inhalt der QuelleGlover. L51488 Effects of Stress Relief Due to Hydrostatic Testing on Girth Weld Failure. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 1985. http://dx.doi.org/10.55274/r0010068.
Der volle Inhalt der QuelleArumugam, Udayansankar, Mimoun Elboujdaini, Ming Gao und Ramiro Vanoye. PR-328-133702-R02 F-S Fatigue Testing of Crack-in-Dent with Framework for Life Prediction. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Oktober 2019. http://dx.doi.org/10.55274/r0011628.
Der volle Inhalt der Quelle