Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Froth flotation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Froth flotation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Froth flotation"
Aldrich, Chris, und Xiu Liu. „Monitoring of Flotation Systems by Use of Multivariate Froth Image Analysis“. Minerals 11, Nr. 7 (25.06.2021): 683. http://dx.doi.org/10.3390/min11070683.
Der volle Inhalt der QuelleWAKAMATSU, Takahide. „Froth flotation.“ Hyomen Kagaku 12, Nr. 1 (1991): 28–33. http://dx.doi.org/10.1380/jsssj.12.28.
Der volle Inhalt der QuelleHan, K. N. „Froth flotation“. International Journal of Mineral Processing 28, Nr. 1-2 (Februar 1990): 152–54. http://dx.doi.org/10.1016/0301-7516(90)90034-v.
Der volle Inhalt der QuelleRalston, J. A. „Froth flotation“. Minerals Engineering 2, Nr. 2 (Januar 1989): 272. http://dx.doi.org/10.1016/0892-6875(89)90049-6.
Der volle Inhalt der QuelleYianatos, Juan, Paulina Vallejos, Luis Vinnett und Sebastián Arriagada. „Semi-Continuous Froth Discharge to Reduce Entrainment of Fine Particles in Flotation Cells Subject to Low-Mineralized Froths“. Minerals 10, Nr. 8 (05.08.2020): 695. http://dx.doi.org/10.3390/min10080695.
Der volle Inhalt der QuelleWang, Lei, und Chao Li. „A Brief Review of Pulp and Froth Rheology in Mineral Flotation“. Journal of Chemistry 2020 (08.02.2020): 1–16. http://dx.doi.org/10.1155/2020/3894542.
Der volle Inhalt der QuelleBarbian, N., E. Ventura-Medina und J. J. Cilliers. „Dynamic froth stability in froth flotation“. Minerals Engineering 16, Nr. 11 (November 2003): 1111–16. http://dx.doi.org/10.1016/j.mineng.2003.06.010.
Der volle Inhalt der QuelleMatis, K. A., und P. Mavros. „Foam/Froth Flotation“. Separation and Purification Methods 20, Nr. 2 (Januar 1991): 163–98. http://dx.doi.org/10.1080/03602549108021414.
Der volle Inhalt der QuelleJera, Tawona M., und Clayton Bhondayi. „A Review of Flotation Physical Froth Flow Modifiers“. Minerals 11, Nr. 8 (10.08.2021): 864. http://dx.doi.org/10.3390/min11080864.
Der volle Inhalt der QuelleOstadrahimi, Mahdi, und Saeed Farrokhpay. „Effect of detergents on froth stability and flotation separation“. Tenside Surfactants Detergents 59, Nr. 2 (28.02.2022): 176–81. http://dx.doi.org/10.1515/tsd-2021-2392.
Der volle Inhalt der QuelleDissertationen zum Thema "Froth flotation"
Hanumanth, G. S. „Froth flotation of china clay“. Thesis, Swansea University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.637217.
Der volle Inhalt der QuelleKaya, Muammer. „Froth washing in mechanical flotation cells“. Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74232.
Der volle Inhalt der QuelleThe effect of wash water on metallurgical performance was tested with various streams from the Falconbridge Strathcona mill at laboratory and pilot and full plant scale, and with the secondary cleaner stage at the Eastmaque Kirkland Lake mill.
Results show that mechanical entrainment is the major means of gangue transport up to the slurry-froth interface. Transport into the froth is mostly hydraulic, although entrapment becomes dominant at low water recoveries. Free gangue recovery was closely related to slurry water recovery at all three scales. Wash water at an optimum superficial rate of 0.03 to 0.07 cm/s reduced entrainment by anywhere from 30 to 70%, typical values being around 50%.
Wash water can be further assisted by mechanical and ultrasonic vibration of the froth, difficult to achieve at plant scale, or with warm wash water, which becomes attractive if a waste heat source is available. A further rejection of 10 to 20% then becomes possible.
Distributor geometry was aimed at washing the entire froth surface at laboratory and pilot scale. It was observed that the recovery of hydrophobic minerals generally increased because the froth was stabilized. At plant scale, two perforated pipes close to the concentrate weir yielded the most reject. Froth stabilization was lost, and recoveries decreased.
Kelley, Kyle. „Model-based Computer Simulation of Froth Flotation“. Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/76850.
Der volle Inhalt der QuelleMaster of Science
Henwood, Daryl. „The effect of conditioning on froth flotation“. Master's thesis, University of Cape Town, 1995. http://hdl.handle.net/11427/21416.
Der volle Inhalt der QuelleThe method and extent to which mineral slurries are conditioned have been shown to greatly affect flotation grades and recovery. Most of this work is very mineral specific and centres around one or two operating variables. One of the major obstacles to understanding the effects of such pretreatment more fully, and to developing a global understanding of conditioning, is the system specific nature of the procedures applied to each mineral, and the apparently conflicting results across a range of mineral types. This thesis sets out to define conditioning both broadly enough to encompass almost all aspects of conditioning, as well as specifically enough to be useful in the study of single mineral-collector systems. Having done this, a measure of the efficiency or effectiveness of conditioning is devised and used to evaluate the relative effects of variables of conditioning, as well as to gain some insight into the mechanisms affecting the results. The work is completed by relating these observations to expected results in industrial applications and their implications on plant procedures. Most forms of conditioning for flotation were found to fit into two basic categories, which if they both take place in the same process, follow one another sequentially. In this thesis, these were termed "primary" and "secondary" conditioning, and were defined as follows: Primary Conditioning relates to the physical preparation of the surface of the particles, including comminution, oxidation, acid leaching and bacterial pretreatment. Secondary Conditioning is the process whereby prepared particles are rendered hydrophobic or hydrophilic through mixing, control of the environment and contacting with reagents.
Zhang, Jian-Gou. „Factors affecting the kinetics of froth flotation“. Thesis, University of Leeds, 1989. http://etheses.whiterose.ac.uk/3305/.
Der volle Inhalt der QuelleRiaz, Muhammad. „An electrochemical investigation of synergism in froth flotation“. Thesis, Brunel University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257547.
Der volle Inhalt der QuelleShumba, Tanaka Casandra. „Relationship between flotation operational factors and froth behaviour“. Master's thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/9127.
Der volle Inhalt der QuelleThis study utilised laboratory-scale column flotation experiments to investigate froth stability, with respect to, water recovery and top-of-froth bubble burst rate. Tests were conducted at different froth heights, superficial air rates and depressant dosages in a 2 m high Plexiglass column, using a PGM bearing UG2 ore from the Bushveld Igneous Complex. Four concentrate and tailings samples were simultaneously collected and solids and water recoveries were determined. Assays of the concentrates were conducted to establish the amount of platinum, palladium and chromite that was recovered under each operating condition. Video footage of the top of the froth was recorded and was used to measure the top-of-froth bubble burst rate. The stability of the froth was analysed qualitatively by comparing the relationship between water recovery and the bubble burst rate at the different operating conditions. A key finding from this study was that the concentration of particles had a large effect on the stability of the froth. The maximum concentration of particles was obtained when the tests were conducted in the absence of depressant. Under these conditions it was established that the froth produced was so stable that increasing the air rate only showed minor changes in the stability of the froth phase. This stability has been attributed to the presence of hydrophobic gangue, which stabilised the froth phase by embedding between adjacent bubbles and preventing bubble coalescence. Conversely, when a high depressant dosage was used the froth became unstable such that no trends could be established when either air rate or froth height were altered. The instability of the froth has been attributed to the depression of the majority of the froth stabilising gangue, which resulted in increased bubble coalescence.
Kaushik, Sarthak. „Surface properties of crandallite in relation to froth flotation“. Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42550.
Der volle Inhalt der QuelleNoble, Christopher Aaron. „Laboratory-Scale Analysis of Energy-Efficient Froth Flotation Rotor Design“. Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/76881.
Der volle Inhalt der QuelleMaster of Science
Ramberg, J. (Juhani). „Effect of the reagents and minerals on froth electrical conductivity in pilot scale froth flotation process“. Master's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201601131001.
Der volle Inhalt der QuelleTässä diplomityössä tutkittiin miten pH:n ja vaahdotusrikastuksessa käytettävien kemikaalien annostuksien säätämisen prosessiin aiheuttamat muutokset vaikuttavat vaahtopatjan eri osien sähkönjohtavuuteen vaahdotusrikastus prosessissa. Kokeellisessa osiossa mittaukset tehtiin Oulu Mining School:in jatkuvatoimisella minipilot -rikastamolla Oulun Yliopistolla maalis- ja toukokuussa 2015. Vaahdon sähkönjohtavuutta mitattiin Outotecin ERT:n (Electrical Resistance Tomography) perustuvalla testisauvalla. Sauva oli asennettu tilavuudeltaan nelilitraiseen vaahdotuskennoon, joka toimi kuparin rikastuspiirissä esivaahdotuskennona. Vaahdon kuplakokoa, väriä, stabiilisuutta ja nopeutta mitattiin Outotecin FrothSenseTM -kameralla. Prosessivirtojen kemialliset koostumukset mitattiin röntgenfluoresenssiin perustuvalla menetelmällä. Työssä selvitettiin kolmen eri vaahdotuksessa käytettävän kemikaalin ja pH:n vaikutusta vaahtopatjan sähkönjohtavuuteen: Dowfrothin (Testi 1), ksantaatin (Testi 2) ja sinkkisulfaatin (Testi 3) annostuksien sekä pH:n (Testi 4) vaikutus. Jokainen testi koostui kolmesta askelkokeesta, jossa mainitun muuttujan arvoa muutettiin muiden muuttujien arvojen pysyessä vakioina. Jokainen testi toistettiin kahdesti. Ennakko-oletus oli, että muutokset pH:hon ja reagenssien annostuksiin aiheuttavat muutoksia prosessinparametreihin kuten kuplakokoon, vaahdon paksuuteen, kemiallisiin koostumuksiin jne., jotka puolestaan vaikuttavat vaahdon sähkönjohtavuuteen. Vaahto jaettiin korkeussuunnassa kerroksiin, jotta mahdollisia eroja sähkönjohtavuuksien arvoissa ja niiden muutoksissa eri vaahdon osien välillä pystyttiin tarkastelemaan. Työn teoriaosuudessa esitellään mineraalien rikastuksen prosessiketju, alkaen jauhatuksesta ja päättyen vedenpoistoprosesseihin. Työssä käydään läpi myös vaahdotusrikastuksessa käytettäviä kemikaaleja sekä eri parametrien mittauksessa käytettäviä mittausmenetelmiä. Kokeellisesta osiosta saadut tulokset osoittavat, että pH:lla sekä vaahdotuksessa käytettävien kemikaalien annostuksien muutoksilla on vaikutusta vaahtopatjan sähkönjohtavuuteen. Erityisesti kuplakoolla ja vaahdon paksuudella oli selkeästi vaikutusta vaahdon sähkönjohtavuuteen. Lisäksi huomattiin, että paksussa vaahdossa sähkönjohtavuuden arvot ja niiden muutokset olivat erilaisia vaahdon eri kerroksissa. Ohuessa vaahdossa erot sähkönjohtavuuksien arvoissa ja muutoksissa vaahtokerrosten välillä olivat huomattavasti pienempiä
Bücher zum Thema "Froth flotation"
Fan, Xianfeng. Froth flotation of ilmenite ores. Birmingham: University of Birmingham, 1999.
Den vollen Inhalt der Quelle findenRao, S. Ramachandra. Surface Chemistry of Froth Flotation. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9124-9.
Der volle Inhalt der QuelleRao, S. Ramachandra. Surface Chemistry of Froth Flotation. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-4302-9.
Der volle Inhalt der QuelleLatin-American Congress on Froth Flotation (2nd 1985 Concepción, Chile). Froth flotation: Proceedings of the 2nd Latin-American Congress on Froth Flotation, Concepción, Chile, 19-23 August 1985. Amsterdam: Elsevier, 1988.
Den vollen Inhalt der Quelle findenKarr, C. L. Froth flotation collision efficiencies in strong force fields. [Washington, D.C.]: U.S. Dept. of the Interior, Bureau of Mines, 1990.
Den vollen Inhalt der Quelle findenKarr, C. L. Froth flotation collision efficiencies in strong force fields. Washington, DC: Dept. of the Interior, 1990.
Den vollen Inhalt der Quelle findenRiaz, Muhammad. An electrochemical investigation of synergism in froth flotation. Uxbridge: Brunel University, 1990.
Den vollen Inhalt der Quelle findenDing, Jian. A study on feed slurry aeration in froth flotation. Ottawa: National Library of Canada, 1993.
Den vollen Inhalt der Quelle findenKhan, L. A. Froth flotation of coal fines from Illinois coal mine effluent. S.l: s.n, 1990.
Den vollen Inhalt der Quelle findenInternational, Colloquium Developments in Froth Flotation 1989 Gordon's Bay South Africa). Developments of froth flotation: International colloquium, 3-4 August 1989, Gordon's Bay, Cape Town. Cape Town: The Branch, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Froth flotation"
Rao, S. Ramachandra. „Flotation Kinetics and Fine Particle Flotation“. In Surface Chemistry of Froth Flotation, 675–702. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-4302-9_14.
Der volle Inhalt der QuelleRao, S. Ramachandra. „Flotation Kinetics and Fine Particle Flotation“. In Surface Chemistry of Froth Flotation, 675–702. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9124-9_14.
Der volle Inhalt der QuelleRao, S. Ramachandra. „Flotation Surfactants“. In Surface Chemistry of Froth Flotation, 385–478. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-4302-9_9.
Der volle Inhalt der QuelleRao, S. Ramachandra. „Flotation Surfactants“. In Surface Chemistry of Froth Flotation, 385–478. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9124-9_9.
Der volle Inhalt der QuelleRao, S. Ramachandra. „Erratum to: Flotation Kinetics and Fine Particle Flotation“. In Surface Chemistry of Froth Flotation, 757. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-4302-9_15.
Der volle Inhalt der QuelleRao, S. Ramachandra. „Erratum to: Flotation Kinetics and Fine Particle Flotation“. In Surface Chemistry of Froth Flotation, 757. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9124-9_15.
Der volle Inhalt der QuelleStoev, St, L. Kuzev, M. Metodiev und Sht Djendova. „Vibroacoustic Improvements of Froth Flotation“. In Innovations in Flotation Technology, 383–407. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2658-8_19.
Der volle Inhalt der QuelleRao, S. Ramachandra. „Surface Forces in Flotation“. In Surface Chemistry of Froth Flotation, 257–92. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9124-9_6.
Der volle Inhalt der QuelleStevenson, Paul, und Noel W. A. Lambert. „Froth Phase Phenomena in Flotation“. In Foam Engineering, 227–49. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119954620.ch11.
Der volle Inhalt der QuelleRao, S. Ramachandra. „Introduction“. In Surface Chemistry of Froth Flotation, 1–53. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-4302-9_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Froth flotation"
Lecrivain, Gregory, Giacomo Petrucci, Uwe Hampel und Ryoichi Yamamoto. „Gravitational Settling of Glass Fibers on an Air Bubble“. In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-16458.
Der volle Inhalt der QuelleLin, Xiaozhu, Guoqing Zhao und Yingying Gu. „A Classification of Flotation Froth Based on Geometry“. In 2007 International Conference on Mechatronics and Automation. IEEE, 2007. http://dx.doi.org/10.1109/icma.2007.4303987.
Der volle Inhalt der QuelleRepkova, Monika. „APPLICATION OF THE FROTH FLOTATION FOR FELDSPAR ORES TREATMENT“. In SGEM2011 11th International Multidisciplinary Scientific GeoConference and EXPO. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2011/s04.103.
Der volle Inhalt der QuelleAmankwah, Anthony, und Chris Aldrich. „Motion estimation in flotation froth using the Kalman filter“. In IGARSS 2015 - 2015 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2015. http://dx.doi.org/10.1109/igarss.2015.7326164.
Der volle Inhalt der QuelleAGANTE, E., T. CARVALHO, F. DURAO, A. PINTO und T. MARIANO. „KINETIC STUDY OF FROTH FLOTATION FOR PET-PVC SEPARATION“. In 2004 New and Renewable Energy Technologies for Sustainable Development. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812707437_0011.
Der volle Inhalt der QuelleKumar, Navin, Shravan Kumar und Shatrughan Soren. „Performance analysis of beneficiation of coal tailings by froth flotation“. In CURRENT TRENDS IN RENEWABLE AND ALTERNATE ENERGY. Author(s), 2019. http://dx.doi.org/10.1063/1.5096500.
Der volle Inhalt der QuelleAmankwah, Anthony, und Chris Aldrich. „Machine Vision-based Motion Estimation of Flotation Froth using Mutual Information“. In Biomechanics / Robotics. Calgary,AB,Canada: ACTAPRESS, 2012. http://dx.doi.org/10.2316/p.2012.752-060.
Der volle Inhalt der QuelleNunez, Felipe, und Aldo Cipriano. „Hybrid modeling of froth flotation superficial appearance applying dynamic textures analysis“. In 2008 Chinese Control Conference (CCC). IEEE, 2008. http://dx.doi.org/10.1109/chicc.2008.4605613.
Der volle Inhalt der QuelleAmankwah, Anthony, und Chris Aldrich. „Machine Vision-based Motion Estimation of Flotation Froth using Mutual Information“. In Biomechanics / Robotics. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.752-060.
Der volle Inhalt der QuelleP, Nagarjuna, und T. Ananthan. „Machine Learning Based Estimation of Silicon Concentration in Froth Flotation Process“. In 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT). IEEE, 2022. http://dx.doi.org/10.1109/gcat55367.2022.9971831.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Froth flotation"
Skone, Timothy J. Froth Flotation. Office of Scientific and Technical Information (OSTI), März 2014. http://dx.doi.org/10.2172/1509061.
Der volle Inhalt der QuelleShirey, G. A., und R. D. Stoessner. Air-Sparged Hydrocyclone/Advanced Froth Flotation fine coal cleaning. Office of Scientific and Technical Information (OSTI), Dezember 1988. http://dx.doi.org/10.2172/5727527.
Der volle Inhalt der QuelleFerris, D. D., J. R. Bencho und E. R. Torak. Engineering development of advanced froth flotation. Volume 2, Final report. Office of Scientific and Technical Information (OSTI), März 1995. http://dx.doi.org/10.2172/78560.
Der volle Inhalt der QuelleAuthor, Not Given. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/6782789.
Der volle Inhalt der QuelleAuthor, Not Given. (Advanced froth flotation techniques): Quarterly technical progress report No. 1, September 1, 1988--November 30, 1988. Office of Scientific and Technical Information (OSTI), Januar 1988. http://dx.doi.org/10.2172/6245259.
Der volle Inhalt der QuelleHonaker, R. Q., und M. K. Mohanty. A modified release analysis procedure using advanced froth flotation mechanisms. Technical report, September 1--November 30, 1995. Office of Scientific and Technical Information (OSTI), Dezember 1995. http://dx.doi.org/10.2172/257326.
Der volle Inhalt der QuelleHonaker, R. Q. ,. Mohanty, M. K. A modified release analysis procedure using advanced froth flotation mechanisms: Technical report, March 1, 1996-May 31, 1996. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/469647.
Der volle Inhalt der QuelleHonaker, R. Q., und M. K. Mohanty. A modified release analysis procedure using advanced froth flotation mechanisms. Final technical report, September 1, 1995--August 31, 1996. Office of Scientific and Technical Information (OSTI), Mai 1997. http://dx.doi.org/10.2172/475631.
Der volle Inhalt der QuelleHarrison, K. E., D. D. Ferris, R. M. Kosky, J. J. Warchol, W. F. Musiol, S. Y. Shiao, G. H. Luttrell, G. T. Adel und R. H. Yoon. Controlled comparison of advanced froth flotation process technology and economic evaluations for maximizing BTU recovery and pyritic sulfur rejection. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/6778849.
Der volle Inhalt der QuelleAuthor, Not Given. Engineering development of advanced physical fine coal cleaning technologies - froth flotation: Third quarterly report, April 1, 1989--June 30, 1989. Office of Scientific and Technical Information (OSTI), Januar 1989. http://dx.doi.org/10.2172/6024370.
Der volle Inhalt der Quelle