Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Friction rate-and-state“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Friction rate-and-state" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Friction rate-and-state"
Sleep, Norman H. „Rake dependent rate and state friction“. Journal of Geophysical Research: Solid Earth 103, B4 (10.04.1998): 7111–19. http://dx.doi.org/10.1029/98jb00199.
Der volle Inhalt der QuelleOzaki, Shingo, Takeru Matsuura und Satoru Maegawa. „Rate-, state-, and pressure-dependent friction model based on the elastoplastic theory“. Friction 8, Nr. 4 (04.01.2020): 768–83. http://dx.doi.org/10.1007/s40544-019-0321-3.
Der volle Inhalt der QuelleOzaki, Shingo. „Finite Element Analysis of Rate- and State-Dependent Frictional Contact Behavior“. Key Engineering Materials 462-463 (Januar 2011): 547–52. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.547.
Der volle Inhalt der QuelleD. Ghanim, Sattam, Qais ѕ. Banyhussan und Thulfiqar А. Aboaljus. „THE PUSHOUT STRENGTH OF CONCRETE PAVEMENT SLAB AND CLAY SOIL LAYERS“. Journal of Engineering and Sustainable Development 25, Special (20.09.2021): 3–224. http://dx.doi.org/10.31272/jeasd.conf.2.3.22.
Der volle Inhalt der QuellePutelat, Thibaut, John R. Willis und Jonathan H. P. Dawes. „Wave-modulated orbits in rate-and-state friction“. International Journal of Non-Linear Mechanics 47, Nr. 2 (März 2012): 258–67. http://dx.doi.org/10.1016/j.ijnonlinmec.2011.05.016.
Der volle Inhalt der QuelleGu, Jicheng. „Friction constitutive law with rate and state dependences“. Pure and Applied Geophysics PAGEOPH 124, Nr. 4-5 (1986): 773–91. http://dx.doi.org/10.1007/bf00879610.
Der volle Inhalt der QuelleBerthoud, P., T. Baumberger, C. G’Sell und J. M. Hiver. „Physical analysis of the state- and rate-dependent friction law: Static friction“. Physical Review B 59, Nr. 22 (01.06.1999): 14313–27. http://dx.doi.org/10.1103/physrevb.59.14313.
Der volle Inhalt der QuelleRezakhani, Roozbeh, Fabian Barras, Michael Brun und Jean-François Molinari. „Finite element modeling of dynamic frictional rupture with rate and state friction“. Journal of the Mechanics and Physics of Solids 141 (August 2020): 103967. http://dx.doi.org/10.1016/j.jmps.2020.103967.
Der volle Inhalt der QuelleNAKATANI, Masao, und Kohei NAGATA. „Rate- and State-dependent Friction and its Underlying Physics“. Zisin (Journal of the Seismological Society of Japan. 2nd ser.) 61, Supplement (2009): 519–26. http://dx.doi.org/10.4294/zisin.61.519.
Der volle Inhalt der QuellePutelat, Thibaut, und Jonathan H. P. Dawes. „Steady and transient sliding under rate-and-state friction“. Journal of the Mechanics and Physics of Solids 78 (Mai 2015): 70–93. http://dx.doi.org/10.1016/j.jmps.2015.01.016.
Der volle Inhalt der QuelleDissertationen zum Thema "Friction rate-and-state"
Pipping, Elias [Verfasser]. „Dynamic problems of rate-and-state friction in viscoelasticity / Elias Pipping“. Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1064869637/34.
Der volle Inhalt der QuelleNakano, Ryuji. „Experimental Research on Rate- and State- Dependent Friction Constitutive Law Focusing on the Transient Change of Frictional Strength at Intermediate to High Slip Velocities“. Kyoto University, 2018. http://hdl.handle.net/2433/232259.
Der volle Inhalt der QuelleLestrelin, Hugo. „Vers une approche physique de l'aléa glissement de terrain déclenché par un séisme“. Electronic Thesis or Diss., Université Côte d'Azur, 2025. http://www.theses.fr/2025COAZ5005.
Der volle Inhalt der QuelleCoseismic landslides contribute to casualties and economic losses during earthquakes.This phenomena is ubiquitous, and its consequences range from cutting off road portions to tsunamis. In order to understand the processes that lead to their instability, we asked ourselves: can we model landslides on pre-existing faults and their seismic triggering using a friction law derived from laboratory experiments, the rate-and-state law. In a first step, we identified the roles of the properties of the landslide (friction, thickness of these dimentary mass, etc.) and the incident wave (frequency, duration, and amplitude) through numerical simulations using the spectral element method and theoretical analyses. By following the state variable of the rate-and-state law, we can determine the stability state of a landslide considered in the case of single-frequency incident waves. In a second step, we applied these theoretical results to the case of the underwater slope of Nice airport. Using previous studies and recent sediment cores drilled near the 1979 landslide tear scar (IFREMER MaRoLyS-PenFeld oceanographic campaign), and rate-and-state laboratory tests at University La Sapienza in Rome, we constrained the geomechanical parameters of the landslide in our simulations. These values, combined with the use of empirical Green's functions for incident waves, allowed us to analyze the stability of the Nice submarine slope under different seismic triggering scenarios, in particular earthquakes of magnitude 6.5 with different epicentral distance
Hillers, G. „On the origin of earthquake complexity in continuum fault models with rate and state friction“. Thesis, 2005. http://hdl.handle.net/2122/1024.
Der volle Inhalt der QuelleInstitute of Geophysics, ETH Zurich. This work was sponsored by EC-Project RELIEF (EVG1-CT-2002-00069).
Unpublished
open
GIACOMEL, Piercarlo. „Frictional, transport properties, and microstructures of simulated basalt faults“. Doctoral thesis, 2021. http://hdl.handle.net/11573/1509976.
Der volle Inhalt der QuelleEarthquakes induced by anthropic activities are a major concern for the success of the industrial operations associated with in-situ underground wastewater injection, oil and gas withdrawals, geothermal energy exploitation, and geological carbon sequestration. Over the last few decades, basalt rocks have drawn heightened attention from the geo-energy industry and the scientific community because of their widespread occurrence in the oceanic lithosphere and their efficiency to act as carbon sinks, thus contributing to locally reduce the CO2 anthropogenic emissions. Given the direct implications for earthquake nucleation, propagation, and arrest in basaltic-dominated environments, understanding the frictional, mechanical, and transport properties of basalts-bearing faults and fractures has become of paramount importance. To gain better insights on the mechanical behavior of basalt-hosted faults, notably the earthquake nucleation phase, friction experiments were performed using the biaxial deformation machine BRAVA and the rotary-shear apparatus SHIVA, both installed at the National Institute of Geophysics and Volcanology (INGV, Rome), Italy. Whereas, to characterize the transport properties of basalt cores and simulated faults, hydraulic transmissivity was measured on the permeameter and before and after friction tests on SHIVA. Three main scientific topics were addressed using an experimental approach: 1) the frictional strength, stability, and healing properties of basalt-built experimental faults (i.e., simulated gouge and bare rock surfaces) under room-dry and wet conditions, by integrating the mechanical data with fault microstructures (Chapter 2); 2) the frictional instabilities and carbonation processes of simulated initially bare rock surfaces with different degree of alteration, triggered by injection of pressurized H2O, pure CO2 , CO2 - rich water, and Argon (Chapter 3); 3) the hydromechanical properties changes of simulated initially bare rock surfaces and their influence on the fault slip behavior during water pressurization (Chapter 4). The accurate stress paths analysis from rotary-shear tests involving hollow bare rock surfaces in Ch.4 required the development of an experimentally derived model accounting for the cylindrical geometry of SHIVA samples, that modifies the fluid pressure contribution on the effective normal stress acting on the laboratory fault, (Appendix 1). All the tests were performed at ambient temperature, which may mimic the temperature conditions in low enthalpy geo-energy sites in basalts. In this dissertation, overall, I demonstrate that the static friction coefficient of basalts is in the range of μ ~ 0.6 – 0.8, at conditions ranging from room-dry to supra-hydrostatic, regardless of the alteration state of basalts and the fluid chemistry during short-term laboratory experiments (< 60 min). Therefore, basalts are inherently frictionally strong and the high healing rates testify their ability to regain shear strength during the interseismic period. Secondly, I show that fault microstructure controls their frictional stability: while simulated gouge are more prone to host earthquake nucleation (i.e., velocity weakening behavior) when deformation becomes localized along well-developed shear zones formed in response to cataclasis and grain size reduction, bare rock surfaces show the opposite behavior, transitioning to velocity strengthening behavior promoted by dilatancy processes coupled with gouge production during shearing. Finally, I illustrate that changes in coupled hydromechanical properties during fluid pressurization can dominate over the effects of second-order frictional changes predicted by the rate-and state-friction laws. In this regard, I observed that hydromechanical weakening effects become more pronounced the lower the fault transmissivity. This evidence provides an effective mechanism for inducing fault weakening and ultimately, to bring about earthquake slip also in velocity-strengthening basalt fault patches.
Bücher zum Thema "Friction rate-and-state"
Henriksen, Niels Engholm, und Flemming Yssing Hansen. Dynamic Solvent Effects: Kramers Theory and Beyond. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805014.003.0011.
Der volle Inhalt der QuelleBuchteile zum Thema "Friction rate-and-state"
Cao, Tianqing, und Keiiti Aki. „Seismicity Simulation with a Rate- and State-Dependent Friction Law“. In Friction and Faulting, 487–513. Basel: Birkhäuser Basel, 1986. http://dx.doi.org/10.1007/978-3-0348-6601-9_6.
Der volle Inhalt der QuelleSinha, Nitish, Arun K. Singh und Avinash D. Vasudeo. „The Effect of State Variables on Nucleation of Earthquake Using the Rate and State Friction“. In Advances in Mechanical Engineering, 237–42. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3639-7_28.
Der volle Inhalt der QuelleUrata, Yumi, Futoshi Yamashita, Eiichi Fukuyama, Hiroyuki Noda und Kazuo Mizoguchi. „Apparent Dependence of Rate- and State-Dependent Friction Parameters on Loading Velocity and Cumulative Displacement Inferred from Large-Scale Biaxial Friction Experiments“. In Earthquakes and Multi-hazards Around the Pacific Rim, Vol. I, 23–43. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71565-0_3.
Der volle Inhalt der QuelleEliseev, Alexander A., Tatiana A. Kalashnikova, Andrey V. Filippov und Evgeny A. Kolubaev. „Material Transfer by Friction Stir Processing“. In Springer Tracts in Mechanical Engineering, 169–88. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60124-9_8.
Der volle Inhalt der QuelleSinha, Nitish, Arun K. Singh und Avinash D. Vasudeo. „Effect of Anthropogenic and Natural Activities on a Rock Slope Failure Using Rate, State, Temperature and Pore Pressure Friction“. In Recent Advancements in Civil Engineering, 549–57. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4396-5_47.
Der volle Inhalt der QuelleGunnarsson, C. Allan, Tusit Weerasooriya und Bryan Love. „Mechanical Response of Friction Stir Welded Aluminum 2139-T8 as a Function of Loading Rate and Stress-State“. In Dynamic Behavior of Materials, Volume 1, 67–71. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4238-7_9.
Der volle Inhalt der QuelleAbe, Steffen, James H. Dieterich, Peter Mora und David Place. „Simulation of the Influence of Rate- and State-dependent Friction on the Macroscopic Behavior of Complex Fault Zones with the Lattice Solid Model“. In Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part I, 1967–83. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8203-3_5.
Der volle Inhalt der QuelleWalsh, J. B. „Mechanics of sliding in rate/state friction experiments“. In Earthquakes: Radiated Energy and the Physics of Faulting, 295–99. Washington, D. C.: American Geophysical Union, 2006. http://dx.doi.org/10.1029/170gm29.
Der volle Inhalt der QuelleMorgan, Julia K. „Particle Dynamics Simulations of Rate- and State-dependent Frictional Sliding of Granular Fault Gouge“. In Computational Earthquake Science Part I, 1877–91. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7873-9_5.
Der volle Inhalt der QuelleHe, Changrong, und Shengli Ma. „Dynamic Fault Motion under Variable Normal Stress Condition with Rate and State Dependent Friction“. In Structural Geology and Geomechanics, 41–52. CRC Press, 2018. http://dx.doi.org/10.1201/9780203738061-4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Friction rate-and-state"
Arneson, Laura J., und Lucas K. Zoet. „USING RATE-AND-STATE FRICTION TO ESTIMATE SLIDING STABILITY OF GLACIERS“. In 54th Annual GSA North-Central Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020nc-347965.
Der volle Inhalt der QuelleNeves, Maria C., und Rui Gomes Neves. „Teaching the rate-and-state friction law using interactive computational modelling“. In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: ICNAAM2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0210590.
Der volle Inhalt der QuelleIto, S., K. Furui und K. Tsusaka. „Analysis of Fluid-Injection-Induced Seismicity Using Dynamic Sliding Model with Rate-And State-Dependent Friction Law“. In SPE Annual Technical Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/214891-ms.
Der volle Inhalt der QuelleXie, Qifeng, Lei Wang und Qi Li. „Simulation of Injection-Induced Slip on a Rate-and-State Fault Considering Poroelastic Effects: A Comparison with Coulomb Failure Stress Criterion“. In 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0638.
Der volle Inhalt der QuelleShafiei, M., und A. T. Alpas. „Friction and Wear Behaviour of Nanocrystalline Cobalt“. In ASME/STLE 2007 International Joint Tribology Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ijtc2007-44131.
Der volle Inhalt der QuelleMa, Tianran, und Hamidreza M. Nick. „Role of the Hydromechanical Properties of Fault on Fluid Injection-Induced Seismicity with Rate-And-State Dependent Friction Model“. In SPE EuropEC - Europe Energy Conference featured at the 84th EAGE Annual Conference & Exhibition. SPE, 2023. http://dx.doi.org/10.2118/214378-ms.
Der volle Inhalt der QuelleKim, Tae Jin, und Carlos H. Hidrovo. „Superhydrophobic Friction Reduction Microtextured Surfaces“. In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18500.
Der volle Inhalt der QuelleShafiei, M., und A. T. Alpas. „Friction and Wear Behaviour of Nanocrystalline Nickel“. In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64315.
Der volle Inhalt der QuelleBobier, Carrie G., Shinichiro Joe und J. Christian Gerdes. „Sliding Surface Envelope Control: Keeping the Vehicle Within a Safe State-Space Boundary“. In ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4144.
Der volle Inhalt der QuelleZhao, Xin, Prabhanjana Kalya, Robert G. Landers und K. Krishnamurthy. „Empirical Dynamic Modeling of Friction Stir Welding Processes“. In ASME 2007 International Manufacturing Science and Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/msec2007-31047.
Der volle Inhalt der Quelle